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Abstract

It is well-known that A-B diblock copolymers in selective solvents or A-homopolymers can form

micelles of different shapes. The critical micelle concentration (CMC) of three basic micelle shapes

(lamellar, cylindrical and spherical) are calculated using the self-consistent field theory formulated

in the grand canonical ensemble. For a given set of molecular parameters, the stable micelle

morphology is determined by a comparison of the CMC. The results confirm that micelles undergo

a sequence of shape transitions, lamellar → cylindrical → spherical, when the A-block of the

diblock copolymer becomes longer. The results also reveal details about the micelle structure, such

as the core radius and corona thickness. This information can be used to understand the effect of

homopolymer molecular weight and monomer-monomer interaction on the micelle morphologies.
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I. INTRODUCTION

Block copolymers are polymers consist of two or more different types of polymeric compo-

nents, or blocks, covalently linked together. The simplest block copolymer is the AB diblock

copolymer, where two distinct blocks, A and B, are linked end-to-end by a covalent bond

[1]. The physical property of diblock copolymers is dictated by the combined effects of two

competing interactions, i.e., the repulsion between, and the connectivity of, the two different

blocks. The simplicity of diblock copolymer architecture makes it an ideal model system to

study self-assembly of amphiphilic molecules. One intriguing example of the self-assembly is

the micelle formation of diblock copolymers blended with homopolymers which are chemi-

cally identical to one of the blocks (the AB/A blends) [2]. The repulsive interaction between

different monomers leads to the formation of aggregates while the covalent bonds between the

incompatible blocks prevent a macrophase separation, leading to the formation of micelles

of different shapes. Similar phenomenon occurs for other amphiphilic molecules, such as the

segregation of surfactants in water and the bilayer formation of lipids. A comprehensive

understanding of the micellization in diblock copolymer/homopolymer blends is important

from the fundamental polymer physics point of view. Furthermore, such an understanding

may also provide insight to the physical properties of more complicated biological systems.

The micelle formation can be understand by considering the process of adding AB diblock

copolymers to a melt of A-homopolymers. At low block copolymer concentration, diblock

copolymers stay as isolated chains in the homopolymer matrix. As the copolymers concen-

tration is increased, the B-blocks of the AB diblock copolymers tend to cluster together to

form micellar aggregates. The formation of micelles leads to a local separation of the A and

B blocks, leaving an AB interface between the B and A domains, thus reducing the unfavor-

able contact between B-blocks and A-homopolymers since the A-blocks acts like a shield.

The copolymer concentration at which micelles start to emerge is termed the critical micelle

concentration (CMC) [3]. The most common micelles have a spherical shape, consisting of

a core of B-blocks surrounded by a corona of A-blocks. Other micelle morphologies, such as

cylindrical or lamellar, have been observed in experiments [4]. The preferred micelle shape

is determined by several parameters, including the copolymer concentration, the diblock

asymmetry, the copolymer/homopolymer length ratio, and the monomer-monomer interac-

tion. These micelles have a characteristic size which is larger than those of a single molecule,
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but they do not become macroscopic objects. Compared to micelles formed by surfactants

with low molecular weights, the block copolymer micelles are more stable, and the micelle

size can be adjusted by varying the molecular weight. The stability and the adjustability

make copolymer micelles a suitable candidate for potential applications, particularly for

drug delivery [5].

Micelle formation in diblock copolymer/homopolymer blends has been studied extensively

using analytic methods and simulations. Some systematic experimental investigations have

also been carried out [4]. On the theory front, several authors employed the scaling argument

to derive an analytic form of the total free energy for the micelle state [6–13]. Generically,

the free energy of a micelle contains contributions from the core, the corona and the in-

terface. Each contribution can be obtained in terms of several independent variables, such

as the number of copolymers per micelle, the core radius, the corona thickness. The free

energy of the micelle state then can be minimized, leading to an equilibrium micelle size.

The comparison of the micelle free energy with the homogeneous state is then made to de-

termine the stability of the micelle state. The analytic nature of these methods allows for

exploring the rich phase behaviors of micelle system as a function of molecular architecture,

composition, and monomer incompatibility. The complexity and validity of the approach

depends on the blend properties. For example, long homopolymers are difficult to penetrate

into the corona, thus micelles can be viewed to consist entirely of copolymer chains. This

simplifies the model considerably. Using this approximation, Leibler [6] studied spherical

micelles, and later Shull et al. [7, 8] extended the model to include cylindrical and lamellar

micelles. When the homopolymers have a length compatible to that of the copolymers, they

can swell the corona of the micelles. Leibler et al. [9] considered the formation of spherical

micelles in this case. Later the theory was extended by Whitmore and Noolandi [10] to

allow the swelling of the micelle core. The transition between different morphologies was

first studied by Mayes et al. [12]. They employed a refined free energy model and focused on

the sphere to cylinder transition. Most of these models assumed that micelles are monodis-

perse; the effect of polydispersity has been studied by Kao et al. [13]. The prediction and

the applicable region of different analytical approaches have been reviewed by Milchev et

al.[14].

The scaling approach considers only the dominant contributions to the total free energy, so

an analytical expression can be obtained. The polymer conformations are usually simplified
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as strongly stretched lines in the scaling theory. In order to make a quantitative comparison

with experiments, we need to consider all contributions and numerical simulations are usually

required. There are a number of simulation studies of the micelle formation in diblock

copolymer/homopolymer blends and other similar systems. Mackie et al. [15] and Guerin

et al. [16] employed the single-chain mean-field theory to examine micelle formations. Smit

et al. [17] used molecular dynamics simulation to study surfactant self-assembling in the

water. Monte-Carlo simulations have also been implemented by several authors [14, 18–

23]. In particular, Pepin and Whitmore [19] compared the scaling relation predicted by

the analytic method to their Monte-Carlo simulation results, and Termonia [22] studied the

sphere-to-cylinder transition of AB diblock copolymer micelles in a selective solvent. Most

simulations treated solvents (or A-homopolymers) explicitly, and it becomes computationally

challenging to simulate long chains and large system. Computational improvement has been

made by Sheng et al. [24] using dissipative particle dynamics.

All these previous simulations are particle-based, in which each polymer is modeled as

a long chain consisted of connected beads. A simulation on a large system with many

long chains is, therefore, computationally expensive. As such, the particle-based simula-

tions are mostly done in systems involving solvents of low molecular weight. For solvents

consisting of long homopolymer chains, field-based methods are the natural choice. Self-

consistent field theory (SCFT) is a powerful theoretical method to model polymer systems,

and its molecular-level accuracy can provide detailed information about the micelle struc-

ture [8, 23, 25–30]. Early attempts [8, 25, 26] of SCFT study of micelles used a lattice-based

numerical calculation. Duque [27] employed the theory with an additional constraint that

permits the examination of intermediate structures. Chang et al. [28] used a pressure dif-

ference to stabilize the micelle. Very recently Greenall et al. [29, 30] studied the micelle

formation and shape transition by a method of varying the size of the simulation box. These

authors designed their model such that it corresponds to the experimental systems of Kinning

et al. [4], and made detailed comparison with the experimental results. Furthermore, Cav-

allo, Müller and Binder [23] also employed SCFT calculations in the (semi-)grandcanonical

ensemble, and compared their results with Monte Carlo simulations. These studies have

greatly enriched our understanding of the micelle formation. However, there still lacks a

thorough investigation of the shape transition by changing various parameters.

In this paper, we use self-consistent field theory to model an isolated micelle in blends of

4



AB diblock copolymers and A homopolymers. We consider three different micelle morpholo-

gies: lamellar, cylindrical and spherical. We focus on the shape transition of the micelle and

the effects of the diblock asymmetry, the homopolymer length and the interaction parameter.

II. SELF-CONSISTENT FIELD THEORY

The self-consistent field theory (SCFT) of polymeric systems has been described in detail

by many authors [31–35]. In this section, we introduce the notations and summarize the

important results for a binary blend of AB/A.

The blend is composed of AB diblock copolymers with a chain length N , and A-

homopolymers with a chain length κN . The polymers are contained in a volume of V .

The block copolymer is composed of a fraction fA of the A-monomers, and a fraction

fB(= 1 − fA) of the B-monomers. We assume that the blend is incompressible and all

the monomers have the same volume ρ−1
0 and statistical length a. The monomer-monomer

interaction is characterized by the standard Flory-Huggins parameter χ. We formulate our

theory in the grand-canonical ensemble. The incompressibility permits the choice of setting

the chemical potential for homopolymers to be zero, and the controlling parameter is the

copolymer chemical potential µc, or equivalently, the activity zc ≡ exp(µc)/κ.

In the framework of self-consistent field theory, the system consisting many interacting

chains is replaced by a system composed of many ideal Gaussian chains in an averaged

effective mean-field potential. The potential is in turn depends on the conformation of the

chains. The grand partition function of the system can be written as a functional integration

over the densities {φ} and their conjugate fields {ω},

Z =
∫

D{φ}D{ω} exp(−G/kBT ), (1)

where the grand free energy G can be written in the form

NG

kBTρ0
=

1

V

∫
dr [χNφA(r)φB(r)]

− 1

V

∫
dr [ωA(r)φA(r) + ωB(r)φB(r)]

− 1

V

∫
dr ξ(r)[1− φA(r)− φB(r)]

−zcQc −Qh. (2)
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The first term is the intermolecular interaction energy, which is proportional to χN ; the

second and third term present the coupling between the densities and their conjugate fields;

the fourth term introduces a Lagrange multiplier ξ(r) to enforce the incompressibility; and

the last two terms are the configuration entropy, related to the single-chain partition func-

tions for two polymers, Qc and Qh. For the copolymer, the partition function has a form

Qc =
∫
drqc(r, 1), where qc(r, s) is an end-integrated propagator, and s is a parameter runs

from 0 to 1 along the length of the copolymer. The propagator satisfies the modified diffusion

equation
∂qc
∂s

=
1

6
Na2∇2qc − ωαqc, (3)

where α = A if 0 < s < fA and α = B if fA < s < 1. The initial condition is qc(r, 0) = 1.

Since the copolymer has two distinct ends, another end-integrated propagator q+c (r, s) is

introduced. It satisfies Eqn. (3) with the right-hand side multiplied by −1, and initial

condition q+c (r, 1) = 1. For the homopolymer, one propagator qh(r, s) is sufficient, and the

single-chain partition function has a form Qh =
∫
drqh(r, 1).

Because exact evaluation of the partition function is in general difficult, various approx-

imations have been developed to evaluate the partition function. The most fruitful method

is the mean field approximation, which amounts to evaluate the function integral using a

saddle-point technique. Technically the saddle-point approximation is obtained by demand-

ing that the function derivatives of the grand free energy expression (2) to be zero,

δG

δφα

=
δG

δωα

=
δG

δξ
= 0. (4)

These conditions lead to the following mean-field equations,

φA(r) =
∫ κ

0
ds qh(r, s)qh(r, κ− s)

+zc

∫ fA

0
ds qc(r, s)q

+
c (r, s) (5)

φB(r) = zc

∫ 1

fA
ds qc(r, s)q

+
c (r, s), (6)

ωA(r) = χNφB(r) + ξ(r), (7)

ωB(r) = χNφA(r) + ξ(r), (8)

1 = φA(r) + φB(r). (9)

These equations can be solved using iteration method.
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The SCFT equations can be easily implemented in planar, cylindrical and spherical ge-

ometry, with the purpose to model micelles of different morphologies. This simplifies the

problem to be one dimensional, and the modified diffusion equations can be solved in real

space using the Cranck-Nicholson method [36]. In our study, it is essential to calculate the

free energy accurately. We have used a fine grid, with 200 space points per
√
Na and 2000

points along the chain. It is also important to set the appropriate starting condition for the

iteration, and we choose to set the micelle initially with a tanh density profile. In addition,

we have run the calculations with different initial configurations to ensure that the converged

solution is independent of the starting radius.
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FIG. 1: Free energy difference ∆G between a cylindrical micelle and the homogeneous phase,

plotted as a function of copolymer chemical potential µc. The blends have the parameters fA =

0.60, κ = 1.0 and χN = 20.

The stability of the micelle is determined by comparing its free energy with the free

energy of the homogeneous phase. Fig. 1 shows ∆G, the free energy difference between

a cylindrical micelle and the homogeneous phase, plotted as a function of the copolymer

chemical potential µc. The parameters of the blends used in this particular calculation are

fA = 0.60, κ = 1.0 and χN = 20. For large values of µc, corresponding to high copolymer

concentration, the free energy difference ∆G is negative, indicating that the micelles are

more stable than the homogeneous state. When µc approaches a critical value, µcmc, from
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above, ∆G increases, and becomes positive when µc is smaller than µcmc. In what follows

we define the CMC as the copolymer concentration at which the excess free energy changes

sign. By using this definition, we have neglected the micelle-micelle interactions and the

translational entropy of the micelles. Since we are mostly interested in the blends of small

copolymer concentrations, the density of micelles is small so the micelle-micelle interaction

contributions is negligible. On the other hand, the translation entropy of the micelles can

be estimated by considering the volume occupied by the micelles [29, 30]. Because we are

focusing on the shape transition of the micelles, the translation entropy contribution, which

is insensitive to the micelle shapes, can be ignored. Once the µcmc is found, the critical

micelle concentration can be calculated from the bulk relation,

µc

κ
=

lnφc

κ
− ln(1− φc) + fBχN(1− 2fBφc). (10)
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FIG. 2: Density profiles for an isolate cylindrical micelle. The blend has the parameters fA = 0.60,

κ = 1.0, χN = 20 and µc = 3.87.

One of the advantages of the self-consistent field method is that detailed density profiles

can be obtained for an isolated micelle. Fig. 2 shows the density profiles for the same

blend examined in Fig. 1 with µc = 3.87. With this knowledge, we are able to compute

the physical properties of the micelle, such as the core radius and the corona thickness,

and the material properties of the micelle, such as the number of copolymer/homopolymer
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within the micelle. For the core radius, a simple definition would be using the point where

φcA(r) = φcB(r). However, this definition breaks down in the weak segregation region when

sufficient amount of homopolymers are present inside the core. We opt to first calculate

the radius of gyration of the core [29, 30]. For spherical micelles, the radius of gyration is

defined by

R2
g,core =

∫
r2(φcB(r)− φb

cB)dV∫
(φcB(r)− φb

cB)dV
, (11)

where φb
cB is the B-block concentration of the copolymers in the bulk phase which has to be

removed to isolate the core. The core radius then can be computed from Rg,core,

R2
g,core =

3

5
R2

core. (12)

Following a similar procedure, we can compute the radius of gyration of the corona,

R2
g,corona =

∫
r2(φcA(r)− φb

cA)dV∫
(φcA(r)− φb

cA)dV
, (13)

where φb
cA is the A-block concentration of copolymers in bulk. The corona thickness is

related to Rg,corona by

R2
g,corona =

3

5

(Rcore + Lcorona)
5 − R5

core

(Rcore + Lcorona)3 − R3
core

. (14)

For lamellar and cylindrical micelles, similar formulas can be obtained.

In order to better understand the material distribution inside the micelle, we define two

more variables characterizing a micelle. The first one is the excess copolymers, defined as

Ω =
1

Vmicelle

∫ Rmicelle

0
(φc(r)− φb

c)dV, (15)

where Rmicelle = Rcore + Lcorona and φb
c is the copolymer concentration in bulk. This vari-

able characterizes the number of copolymers that are segregated. The second one is the

penetrating homopolymer which has a form

Θ =
1

Vmicelle

∫ Rmicelle

0
φhA(r)dV. (16)

This variable describes the number of homopolymers which penetrate inside the micelles,

which is a good indication for the degree of swelling.

III. RESULTS AND DISCUSSIONS

In general, the critical micelle concentration for a particular morphology is a function of

the diblock asymmetry fA, the homopolymer/copolymer length ratio κ, and the interaction
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parameter χN . The CMC of different morphologies can be obtained from the self-consistent

field theory, and the preferred micelle geometry is the one with the lowest CMC. Since the

chemical potential is a monotonic function of the copolymer concentration in the dilution so-

lution, the shape transition sequence can be obtained by comparing the copolymer chemical

potential.

We begin by examining the dependence of CMC on fA, while keeping κ and χN constant.

Before we present our results, it is instructive to reproduce the results from the scaling theory

[7], which can be compared with the SCFT results. In Fig. 3, the value of µcmc/(χN)1/3

for different micelle shapes are plotted as functions of the copolymer asymmetry fA. The

scaling theory predicts that the micelle geometry is lamellar for fA < 0.65, cylindrical for

0.65 < fA < 0.87, and spherical for fA > 0.87. Also, the value of fA at which the shape

transition occurs does not depend on χN , due to the coincidence that µcmc for different

geometries have the same factor (χN)1/3.
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FIG. 3: Dependence of µcmc on the copolymer asymmetry fA as derived from the scaling method.

Three morphologies are plotted: lamellar (dotted line), cylindrical (dashed line) and spherical

(solid line).

In the inset of Fig. 4, the critical micelle concentrations, computed from the SCFT,

are plotted as a function of fA for blends with κ = 1.0 and χN = 20. The curves for

different micelle shapes are difficult to distinguish due to the small difference among them,

10



but the trend that the CMC is a monotonically increasing function of fA can be seen.

When fA is increased while the total length of the copolymer kept constant, the length of

B-block is reduced, which effectively reduces the incompatibility between copolymers and

homopolymers. At the same time, the length of the A-block is increased, which improves the

solubility of the copolymers in the homopolymers. Thus, a higher copolymer concentration

is required for the formation of micelles.
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FIG. 4: Dependence of µcmc on the copolymer asymmetry fA for blends with χN = 20 and

κ = 1.0. The critical micelle concentrations are plotted in the inset. Three morphologies are

plotted: lamellar (dotted line, squares), cylindrical (dashed line, triangles) and spherical (solid

line, spheres).

The shape transition can be more clearly shown when we examine the chemical potential

plot (Fig. 4). The chemical potential µcmc corresponding to CMC is a decreasing function

of fA for cylindrical and spherical micelles when the asymmetry is moderate, but starts to

increase when the asymmetry becomes larger. In contrast to the scaling theory, the µcmc for

the lamellar micelles also has a small negative slope. For copolymers with fA close to 0.5,

the chemical potential is much lower for the lamellar micelles than for the cylindrical and

spherical micelles, indicating that the lamellar structure is favored. As fA increases, µcmc

decreases. The slopes are different for different geometries; the curve for spherical micelles

decreases most rapidly, and the lamellar micelles have a more flat curve. The comparison
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between µcmc indicates a trend of shape transition: lamellar → cylindrical → spherical, as

fA is increased from 0.5. This tendency can be explained by a simple geometrical argument:

as fA increases, the ratio between the volume of the corona (A-block) and core (B-block)

becomes larger, causing the interfaces between A and B blocks to curve more towards the

core. This transition sequence resembles that of neat diblock copolymer phases from lamellae

to cylinders to spheres. For κ = 1.0 and χNc = 20, the micelle shape transitions happen at

fA = 0.54 and fA = 0.65.

In Fig. 5, plots similar to those in Fig. 4 are shown, only the length ratio of homopoly-

mer/copolymer is changed to κ = 2.0. The transition points move towards copolymers with

large fA, at fA = 0.59 and fA = 0.70.

In Fig. 6, we increase the incompatibility between the A/B monomers to χN = 50, while

keeping the homopolymer length the same. The change of χN has a pronounced effect on

CMC (notice the difference in y-scale of Fig. 4 and 6 insets). Similar to Fig. 5, the transition

points also shift to more asymmetric copolymers. This is in contrast to the scaling result,

which states that the shape transition is independent of χN .

The shape transition of the micelle can also be induced by varying the homopolymer

molecular weight. We choose to study the blends with fA = 0.70 and χN = 20. For such

an asymmetric diblock copolymer, the lamellar structure is unstable, so only cylindrical and

spherical micelles are considered. In Fig. 7, the critical micelle concentrations are plotted

as functions of κ. Since the difference in CMC between different homopolymer lengths is

considerably larger than those between different shapes for a given homopolymer length, we

also plot the difference of CMC in the inset to demonstrate the transition point more clearly.

The micelle undergoes a sphere to cylinder transition at around κ = 2.0.

To better understand the mechanism of the shape transition, we examine the micelle core

radius, the corona thickness, the excess copolymers and the penetrating homopolymers in

the micelle. In Fig. 8(a), the core radius consisted mostly of the B-blocks are shown as

a function of κ. The configuration of copolymer chains in the core is notably different for

the two geometries. In the core of the cylindrical micelles, the B-chains are only slightly

extended from their Gaussian configuration (the unperturbed rms end-to-end distance for

the B-block with fB = 0.3 is 0.22
√
Na). When the homopolymer length is increased, the B

chains are stretched further, but in a more gradual manner. This is because more copolymers

are segregated into the micelle, as shown in Fig. 8(c). This effect counters the increase of

12
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FIG. 5: Dependence of µcmc and φcmc on the copolymer asymmetry fA for blends with χN = 20

and κ = 2.0. Notation as in Fig. 4.
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FIG. 6: Dependence of µcmc and φcmc on the copolymer asymmetry fA for blends with χN = 50

and κ = 1.0. Notation as in Fig. 4.

core radius and provides some release for the B chains. For the spherical micelle, similar

trends of the core radius and excess copolymers are found, but comparing to the cylindrical

micelles, the B-blocks are more elongated in the spherical micelle.
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FIG. 8: Micelle properties as a function of κ for blends with χN = 20 and fA = 0.70. The core

radius (a), the corona thickness (b), the excess copolymers (c) and the penetrating homopolymers

(d) are plotted. Notation as in Fig. 7.
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The corona of the micelle consists of mostly A-blocks of the copolymer, swollen by the

A-homopolymers. The corona thickness (Fig. 8(b)) appears to be much larger than the

length of the unperturbed A-block (0.34
√
Na), indicating that the A-blocks are strongly

stretched. This chain conformation is energetically unfavorable, but it can be compensated

by the gain in entropy due to the mixing of A-blocks and A-homopolymers. The difference

between the two morphologies lies in the degree of swelling, as shown in Fig. 8(d). The

spherical micelle has more homopolymers penetrating into the corona than the cylindrical

micelle. Those homopolymers help to relax the stretching of the A-blocks in the corona.

When κ is increased, the size of the homopolymers becomes bigger comparing to the micelle,

and it is more difficult for the homopolymers to penetrate inside the corona. Therefore, both

the corona length and the swelling decreases as κ increases.

The polymer chains in both the core and the corona are strongly stretched for the two

geometries. On the other hand, the formation of micelles separates the A and B monomers

to avoid the unfavorable interactions. Also, the A-homopolymers can penetrate the corona

to release some tension of the A-blocks. Comparing to the cylindrical micelle, there are

more A-homopolymers in the corona of the spherical micelle. Thus the reduction of swelling

due to increasing homopolymer length has a more profound effect on the spherical micelle,

causing the shape transition from spherical micelle to cylindrical micelle, as shown in Fig.

7.

Change in the micelle morphology can also be induced by varying the interaction param-

eter χN . We consider blends with parameters fA = 0.7 and κ = 1.0. The critical micelle

concentrations and micelle properties are plotted in Fig. 9 and 10. A change of morphology

from spherical to cylindrical micelle is induced when the χN is increased, similar to the

case when κ is increased. However, there are some notable differences. First, the CMC

changes more rapidly with varying χN . The value of the CMC is reduced by two orders

of magnitude when χN changes from 20 to 40, while the CMC has the same order when κ

changes from 1 to 2. Varying the homopolymer length is to change the surrounding of the

micelle, while changing the interaction parameter directly alters the incompatibility between

the A/B blocks of the copolymers, so the latter has a much profound effect on the CMC.

Second, as shown in Fig. 10(b), there appears to be a minimum in the corona thickness

when χN is increased. At the weak segregation region when χN is small, the corona is

strongly swollen by the A homopolymers. As χN increases, the repulsion between the A
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and B monomers pushes the A homopolymers away from the corona, subsequently reducing

the corona thickness. As χN becomes larger and reaches the strong segregation region, the

interfacial energy becomes important. Both the A and B blocks of the copolymers have to

be stretched in order to reduce the surface per copolymer; thus the corona thickness starts to

increase. This is similar to the case of diblock melts, where the period of the order structure

increases as χN increase.

IV. SUMMARY

In this paper, we have investigated the shape transition of an isolated micelle formed

in the AB-diblock copolymer and A-homopolymer blends. Self-consistent field theory has

been employed to compute the critical micelle concentration for three different morpholo-

gies: lamellar, cylindrical and spherical. By comparing the CMC for different shapes, we can

determine the preferred micelle geometry. Several factors can influence the micelle morphol-

ogy, and we have explored the effects of the diblock asymmetry, the homopolymer/copolymer

length ratio and the monomer-monomer interaction, on the micelle shape transitions. It is

found the micelle undergoes a sequence of shape transitions, lamellar → cylindrical → spher-

ical, when the A-block of the copolymer becomes longer. Previous studies have showed the

same transition sequence but for different ranges of homopolymer molecular weight. Mayers

et al. [12] used the scaling argument and considered the case of κ < 1, while Termonia [22]

carried out Monte Carlo simulation for the system of AB diblock copolymer in a B-selective

solvent. Both studies were focused on the cylindrical and spherical micelles. Combined with

results showed in Fig. 4 (κ = 1) and Fig. 5 (κ = 2), we can conclude that the transition from

cylindrical to spherical micelle is a generic feature upon increasing the A-block length. In ex-

periments, micelles with non-spherical structure were observed using transmission electron

microscopy by Kinning et al. [4] in dilute poly(styrene-butadiene)/polystyrene solutions.

They found the transition from spherical micelles to wormlike micelles by increasing the

molecular weight of the butadiene block (decreasing fA), which is in agreement with our

conclusion.

For asymmetric copolymers with a large A-block, the transition from spherical to cylin-

drical micelle is expected when the homopolymer length is increased. The mechanism of the

shape transition can be understood by examining the chain deformation inside the micelle.
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As the length ratio of homopolymer/copolymer increases, the micelle core and corona exhibit

the opposite variation: (i) The corona is less swollen by the longer homopolymer, leading to

the relaxation of the A-blocks in the corona, and thus a smaller corona thickness. (ii) The

number of copolymer chains per micelle increases due to the reduced compatibility, and thus

the core radius increases. For a fixed copolymer asymmetry, the increase of core/corona ratio

induces a shape transition from spherical to cylindrical micelles. The structure variations of

micelles are in agreement with another experiment performed by Kinning et al. [37] using

small angle x-ray scattering.

The same transition from sphere to cylinder appears when the repulsive interaction

between different monomers becomes stronger. Similar to the case of changing κ, the

core radius and number of copolymer chains per micelle increase, while the degree of

swelling is reduced as χN becomes larger. These trends were observed in the experi-

ment by Rigby and Roe [38]. They studied the micelle formation in dilute poly(butadiene-

styrene)/polybutadiene solutions using small angle x-ray scattering and focused on the effect

of temperature. Their observation of volume fraction of B-blocks in the core and the num-

ber of copolymer aggregating in the micelle are in agreement with the trends shown in Fig.

10 (d) and (c), but the core radius is insensitive to the temperature in certain ranges and

increases suddenly at high temperature. This may attribute to the fairly small molecular

weight of homopolymer used in the experiments. When κ is small, the micelles are highly

swollen by the homopolymer, and our definition of core radius may not correspond to that

measured in experiments.

Our self-consistent field calculations demonstrate that valuable information can be ob-

tained, such as the geometrical dimensions of the micelle, and the distribution of the poly-

mers inside the micelle. These properties are closely related to the controlling parameters.

By varying these parameters, micelle with required shape and size may be obtained for

potential applications. Since it is expensive and time-consuming for experimentalists to

explore the parameter space by trial-and-error, theoretical study is crucially important to

understand the underlying cause and provide guidance for the experiments.

It is important to point out the limitation of the present approach. Since we have ne-

glected the translational entropy of the micelles, the critical micelle concentrations calcu-

lated are qualitatively correct. Also, for lamellar and cylindrical micelles, we only considered

the ideal case, while in reality, infinite long cylinders and infinite broad bilayers can not be
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formed. The ends of the cylinders or the edges of the lamellae will have a contribution to the

free energy, so the points of shape transition needed be modified accordingly. Furthermore,

cylindrical micelles can form loops while lamellar micelles can form vesicles. Investigation

these more complex micellar structures is an important topic. Nevertheless, by comparing

the minimum copolymer concentration required for micellization in three geometries un-

der ideal conditions, we have obtained the trends in dilute systems of diblock copolymer

with homopolymers. The results obtained in the current study are consistent with available

theoretical and experimental studies. They provide a detailed picture of the micelles with

different shapes and a good understanding of the mechanism of micelle shape transitions.
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