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We report results of Dissipative Particle Dynamics simatat for an anisotropic flow past su-
perhydrophobic striped surfaces. We systematically vavgisl important parameters, such as
the flow direction, the area fraction of the gas sectors, hadoacal slip length of the gas/liquid
interface. We compare the simulation results with the nigaksolution to the Navier-Stokes
equations, analytic expressions, and asymptotic formnlake limits where the local slip-
length is small and large in comparison to the texture pégityd The simulation results allow
one to adjust surface properties to optimize transverseghena and passive microfluidic
mixing. Our approach could be helpful to rational designugderhydrophobic surfaces.

1 Introduction

Fluid modeling from micrometer to nanometer scale not oslg fundamental problem in
fluid mechanics, but also plays an important role in desiginimwdern micro- and nanoflu-
idic deviced'2. These devices have wide applications in different fieldsas develop-
ment of inkjet printheads for xerography, lab-on-a-chighteology, and most importantly,
the manipulation and separation of DNA in molecular biologwo assumptions which
are often taken for granted in studies of macroscopic flughpimena, the no-slip bound-
ary condition and the homogeneity of the surface, becomatfidin small length scales.
The extension to partial-slip boundary condition and fegeneous/anisotropic surfaces
provide ample opportunities for simulations and app|madi

Textured surfaces play a major role in microfluidics due ®hgh surface to volume
ratio which greatly enhances the fluid-surface interacti@me example is the superhy-
drophobic Cassie surfaces, where no-slip area and paliflahrea arrange in a striped
pattern. The partial-slip region consists of trapped gasichvis stabilized by a rough
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Figure 1: Sketch of the striped surfac®: = 0 to longitudinal stripes® = 7 /2 corre-
sponds to transverse stripes (a), and of the liquid interfiathe Cassie state (b).

wall texture and leads to a huge slip lengfsee Fig. 1(a)]. These surfaces are known to
be self-cleaning and causes droplets to roll (rather thde)suinder gravity and rebound
(rather than spread) upon impact. Besides that pattermeatisgdrophobic materials are
important in context of fluid dynamics and their superlultiicg properties. In particular,
superhydrophobic heterogeneous surfaces in the Cast@eextabit very low friction, and
the resulting drag reduction is associated with the largmage of liquids. Therefore,
the ability to manipulate and control flow properties by \agythe surface pattern has
promoted interests to quantify the effects of surface logieneity and anisotropy.

In general it is difficult to quantify the flow past heterogens surfaces. However, an-
alytical results can often be obtained by using an effedlipeboundary conditiorh.g, at
the imaginary smooth homogeneous, but generally anisietsopfacé. For an anisotropic
texture, the effective slip depends on the direction of th find is a tensoh.g = {bfjﬂ
represented by a symmetric, positive definite 2 matrix®

ble 0
eff = ¢ -0, 1
beg SQ(Objﬁ>S® (1)
diagonalized by a rotation
cos® sin®
SG(Sin@COS@)' @

The tensorial formalism allows one to calculate the efiecslip in any direction given by
an angled, provided two eigenvalues of the slip-length tenﬁ&g, (© = 0) andb; (© =
m/2), are known. For all anisotropic surfaces, the eigenvaliL'J@ﬁmdbeiicf correspond to
the fastest (greatest forward slip) and slowest (leastdouvslip) orthogonal directions.

In this report, we present Dissipative Particle DynamicBED simulations for a flow
over superhydrophobic striped surfaces and compare oults@gith numerical solutions
to Navier-Stokes equatiohg and some analytical theorfe$®.



2 Theory

We consider a creeping flow along a planar surface, and a stamteoordinate system
(z,y, z) [Fig. 1(a)]. The origin of coordinates is placed at the fla¢iface. The local slip-
length profile is alternating no-slip (area fractign) and partial slip (area fractiopp and
slip lengthb) regions, with the periodicity. [Fig. 1(b)]. Our system is based on the limit
of a thick channel or a single interface, so that the velgmitfile sufficiently far above the
surface may be considered as a linear shear flow.

When the partial-slip region has a small slip length in corizma to the periodicity,
b < L, it has been predicted that the effective slip-length tethgg becomes isotropic,
regardless of the type of surface textdrés

Bt ~ by 3)

In the opposite limit where the gas sector becomes perfipcbsk> L, the eigenvalues
of the effective slip-length tensor can be deritet

[
et = % ~ %ln [sec <£¢2)] . (4)

L L 2

For more general cases of arbitrary value)oBelyaev and Vinogradovasuggested
approximate expressions for the effective slip,

I In [sec (ﬂéz)}
beg 1 !
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These formulas are accurate over large range of the pareshated recover the right
asymptotic in the largélimit [Eq. (4)].

A detailed analysis of the isotropic slip-length, Eq. (8ueals that it can only apply for
surfaces with a continuous slip profiteso its validity for the striped surface, which has
step-like jump of the local slip at the stripe edges, is oaable. Recently, we derived a
new asymptotic formula for weakly slipping surfacés« L),

bl 2e? e
aens = 0| 25 @
bj N 42 2me
i cons = {n[] ) ®

wheres = b/L andy = 0.5772157 ... is Euler’s constant.



3 Simulation Method

We apply Dissipative Particle Dynamics (DPD) method’ to simulate the flow near
striped superhydrophobic surfaces. The DPD method is abledied coarse-grained,
momentum-conserving method for mesoscale fluid simulatiaich naturally includes
thermal fluctuations. More specifically, we use a DPD versitthout conservative inter-
actions®. The hydrodynamic boundary conditions are implementeaiuisie tunable-slip
method®, which model the fluid-surface interaction using an effexfriction force, com-
bined with an appropriate thermostat.

The simulations are carried out using the open source siinnlpackage ESPRes%o
Modifications have been made to incorporate the patterrndaices. The simulation starts
with randomly distributed particles inside the channet] e flow is induced by applying
a body force to all particles. A small body force is used toueaghe flow velocity near
the wall is small, in order to avoid the effect of finite Rey#®humber in simulations. The
large system size leads to an increased simulation time {(6¢¢ime steps) for the flow to
reach a steady state. The flow velocity is small in compangtimthe thermal fluctuation;
thus the measurement also requires many time steps to abiairgh statistics. In this
work, velocity profiles are averaged oved® time steps. A fit to the plane Poiseuille
flow then gives the effective slip lengthThe error bars are obtained by six independent
simulation runs with different initialization.

Based on the values of the velocities close to the surfacestimate the characteristic
Reynolds number of our system to be(®f10), which is larger than those in real microflu-
idic devices. Thus, inertia effects may become importarsinnulations, and the Stokes
equation is not strictly valid. This leads to a slight redorctof our simulation results for
the effective slip in the transverse direction, but the flowhe longitudinal direction shall
not be affected. To reach more realistic Reynolds numbegsyauld need to reduce the
body force by orders of magnitude. This would reduce theageflow velocity signif-
icantly, and the necessary simulation time to gather datta suifficiently good statistics
will then increase prohibitively.

4 Results and Discussion

In this section, we present DPD simulation results and coenfteem with numerical cal-
culations and analytic formulas in section 2.

We start with varying in a system where the no-slip and partial-slip areas arelequa
¢2 = 0.5, and the slip length is in the intermediate regigil. = 1.0. Figure 2 shows the
results for the effective downstream slip Iengthe%). Also shown are theoretical curves
calculated using Eq. (1), which can be explicitly written as

biff) = bLlH cos? © + by sin? ©. 9
Here, the eigenvalues of the slip-length tensor are olddiganumerical method and from
Egs. (5,6). The simulation data are in good agreement wébrttical predictions, con-
firming the anisotropy of the flow and the validity of the coptef a tensorial slip for
striped surfaces.
Next we examine the effect of varying the fraction of slippgas/liquid interfaceg,.
Figure 3(a) shows the eigenvaluég andb;, of the slip-length tensor as a function of
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Figure 2: The effective downstream slip Iengbl‘jﬁ), as a function of tilt angl&® for a
pattern withb/ L = 1.0 and¢2 = 0.5. Symbols are simulation data. Curves are theoretical
values calculated using Eqg. (9) with eigenvalues obtained bumerical method (solid)
and by Egs. (5,6) (dot-dashed).

@2, for a pattern wittb/L = 1.0. The results clearly demonstrate that the gas fractiois
the main factor determining the value of effective slip, efhsignificantly increases with
the fraction of the slippery gas sectors. The theoreticalesimatch the simulation data
very nicely.

We further examine the weakly slippery surfaces witl. = 0.034 and present the
longitudinal slip Iengtrb!ff in Fig. 3(b). Here we compare several different theoretical
predictions: the isotropic formula Eq. (3), the new asyrtipteq. (7), and the analyti-
cal expression Eq. (5). The results for the transverse sligthbZ; are similar to those
presented in Fig. 3(b), so we do not show them here. The vibndke transverse com-
ponent are smaller than those for the longitudinal compbnedicating that the flow is
anisotropic.

Finally, we present the eigenvalues of the effective gipgth tensor as a function of the
slip lengthb at gas/liquid interface. The results for large values afe shown in Fig. 4(a).
The analytic formulas Egs. (5,6) are shown in dot-dashesk)ivhich are accurate over
large range of thé value. The effective slip lengths saturate when the sligtlehis much
greater than the stripe periodicify and reach the asymptotic values predicted by Eq. (4).

The simulation results and several theoretical predistifmn small values ob are
shown in Fig. 4(b). Again only the results for the longitualicomponent is shown here,
while the transverse component has a similar dependenessurface-averaged slip, pre-
dicted by Eg. (3), is well above the exact values of the lardjital effective slip. The
analytical expressions Eq. (5), on the other hand, underatgs the effective slip. The
newly developed formulas, Eq. (7), on the other hand, givesbrrect asymptotic behav-
ior in the limit of very smallb/ L.
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Figure 3: The eigenvalues of the effective slip-length ¢er{symbols) as a function of
gas-sector fractio, for (a) b/L = 1.0 and (b)b/L = 0.034. The numerical results
are shown as solid curves. Also shown are asymptotic forsrieép (3) (dashed), Eq. (7)
(dotted), and the analytic expressions Egs. (5,6) (doteid)s
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Figure 4: The eigenvalues of the effective slip-length ¢er{symbols) as a function of
local slip lengthb at the gas/liquid interface. The top figure (a) are result$sfige values
of b and¢, = 0.5, and the bottom figure (b) are results for weakly slippingasee and
¢2 = 0.3. The numerical results are shown as solid curves. Also stawmsymptotic
formulas Eqs. (3,4) (dashed), Eqg. (7) (dotted), and theyéin@xpressions Eqs. (5,6) (dot-
dashed).
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