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We report results of Dissipative Particle Dynamics simulations for an anisotropic flow past su-
perhydrophobic striped surfaces. We systematically vary several important parameters, such as
the flow direction, the area fraction of the gas sectors, and the local slip length of the gas/liquid
interface. We compare the simulation results with the numerical solution to the Navier-Stokes
equations, analytic expressions, and asymptotic formulasin the limits where the local slip-
length is small and large in comparison to the texture periodicity. The simulation results allow
one to adjust surface properties to optimize transverse phenomena and passive microfluidic
mixing. Our approach could be helpful to rational design of superhydrophobic surfaces.

1 Introduction

Fluid modeling from micrometer to nanometer scale not only is a fundamental problem in
fluid mechanics, but also plays an important role in designing modern micro- and nanoflu-
idic devices1, 2. These devices have wide applications in different fields such as develop-
ment of inkjet printheads for xerography, lab-on-a-chip technology, and most importantly,
the manipulation and separation of DNA in molecular biology. Two assumptions which
are often taken for granted in studies of macroscopic fluid phenomena, the no-slip bound-
ary condition and the homogeneity of the surface, become doubtful in small length scales.
The extension to partial-slip boundary condition and heterogeneous/anisotropic surfaces
provide ample opportunities for simulations and applications.

Textured surfaces play a major role in microfluidics due to the high surface to volume
ratio which greatly enhances the fluid-surface interaction. One example is the superhy-
drophobic Cassie surfaces, where no-slip area and partial-slip area arrange in a striped
pattern. The partial-slip region consists of trapped gas, which is stabilized by a rough
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Figure 1: Sketch of the striped surface:Θ = 0 to longitudinal stripes,Θ = π/2 corre-
sponds to transverse stripes (a), and of the liquid interface in the Cassie state (b).

wall texture and leads to a huge slip length3 [see Fig. 1(a)]. These surfaces are known to
be self-cleaning and causes droplets to roll (rather than slide) under gravity and rebound
(rather than spread) upon impact. Besides that patterned superhydrophobic materials are
important in context of fluid dynamics and their superlubricating properties. In particular,
superhydrophobic heterogeneous surfaces in the Cassie state exhibit very low friction, and
the resulting drag reduction is associated with the large slippage of liquids. Therefore,
the ability to manipulate and control flow properties by varying the surface pattern has
promoted interests to quantify the effects of surface heterogeneity and anisotropy.

In general it is difficult to quantify the flow past heterogeneous surfaces. However, an-
alytical results can often be obtained by using an effectiveslip boundary condition,beff , at
the imaginary smooth homogeneous, but generally anisotropic surface4. For an anisotropic
texture, the effective slip depends on the direction of the flow and is a tensor,beff ≡ {beffij }

represented by a symmetric, positive definite2× 2 matrix5

beff = SΘ

(

b
‖
eff 0
0 b⊥eff

)

S−Θ, (1)

diagonalized by a rotation

SΘ =

(

cosΘ sinΘ
− sinΘ cosΘ

)

. (2)

The tensorial formalism allows one to calculate the effective slip in any direction given by
an angleΘ, provided two eigenvalues of the slip-length tensor,b

‖
eff (Θ = 0) andb⊥eff (Θ =

π/2), are known. For all anisotropic surfaces, the eigenvaluesb
‖
eff andb⊥eff correspond to

the fastest (greatest forward slip) and slowest (least forward slip) orthogonal directions.
In this report, we present Dissipative Particle Dynamics (DPD) simulations for a flow

over superhydrophobic striped surfaces and compare our results with numerical solutions
to Navier-Stokes equations6, 7 and some analytical theories8–11.
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2 Theory

We consider a creeping flow along a planar surface, and a Cartesian coordinate system
(x, y, z) [Fig. 1(a)]. The origin of coordinates is placed at the flat interface. The local slip-
length profile is alternating no-slip (area fractionφ1) and partial slip (area fractionφ2 and
slip lengthb) regions, with the periodicityL [Fig. 1(b)]. Our system is based on the limit
of a thick channel or a single interface, so that the velocityprofile sufficiently far above the
surface may be considered as a linear shear flow.

When the partial-slip region has a small slip length in comparison to the periodicity,
b ≪ L, it has been predicted that the effective slip-length tensor beff becomes isotropic,
regardless of the type of surface textures8, 12,

b
‖,⊥
eff ≃ bφ2. (3)

In the opposite limit where the gas sector becomes perfect slip, b ≫ L, the eigenvalues
of the effective slip-length tensor can be derived13, 14

b
‖
eff

L
=

2b⊥eff
L

≃
1

π
ln

[

sec

(

πφ2

2

)]

. (4)

For more general cases of arbitrary value ofb, Belyaev and Vinogradova9 suggested
approximate expressions for the effective slip,

b
‖
eff

L
≃

1

π

ln

[

sec

(

πφ2

2

)]

1 +
L

πb
ln

[

sec

(

πφ2

2

)

+ tan

(

πφ2

2

)] , (5)

b⊥eff
L

≃
1

2π

ln

[

sec

(

πφ2

2

)]

1 +
L

2πb
ln

[

sec

(

πφ2

2

)

+ tan

(

πφ2

2

)] . (6)

These formulas are accurate over large range of the parameters9 and recover the right
asymptotic in the largeb limit [Eq. (4)].

A detailed analysis of the isotropic slip-length, Eq. (3), reveals that it can only apply for
surfaces with a continuous slip profile11, so its validity for the striped surface, which has
step-like jump of the local slip at the stripe edges, is questionable. Recently, we derived a
new asymptotic formula for weakly slipping surfaces (b ≪ L),

b
‖
eff

L
≃ εφ2 +

2ε2

π

{

ln

[

πε

sin (πφ2)

]

− γ

}

, (7)

b⊥eff
L

≃ εφ2 +
4ε2

π

{

ln

[

2πε

sin (πφ2)

]

− γ

}

, (8)

whereε = b/L andγ = 0.5772157 . . . is Euler’s constant.
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3 Simulation Method

We apply Dissipative Particle Dynamics (DPD) method15–17 to simulate the flow near
striped superhydrophobic surfaces. The DPD method is an established coarse-grained,
momentum-conserving method for mesoscale fluid simulations, which naturally includes
thermal fluctuations. More specifically, we use a DPD versionwithout conservative inter-
actions18. The hydrodynamic boundary conditions are implemented using the tunable-slip
method19, which model the fluid-surface interaction using an effective friction force, com-
bined with an appropriate thermostat.

The simulations are carried out using the open source simulation package ESPResSo20.
Modifications have been made to incorporate the patterned surfaces. The simulation starts
with randomly distributed particles inside the channel, and the flow is induced by applying
a body force to all particles. A small body force is used to ensure the flow velocity near
the wall is small, in order to avoid the effect of finite Reynolds number in simulations. The
large system size leads to an increased simulation time (over 106 time steps) for the flow to
reach a steady state. The flow velocity is small in comparisonwith the thermal fluctuation;
thus the measurement also requires many time steps to obtainenough statistics. In this
work, velocity profiles are averaged over105 time steps. A fit to the plane Poiseuille
flow then gives the effective slip length7. The error bars are obtained by six independent
simulation runs with different initialization.

Based on the values of the velocities close to the surface, weestimate the characteristic
Reynolds number of our system to be ofO(10), which is larger than those in real microflu-
idic devices. Thus, inertia effects may become important insimulations, and the Stokes
equation is not strictly valid. This leads to a slight reduction of our simulation results for
the effective slip in the transverse direction, but the flow in the longitudinal direction shall
not be affected. To reach more realistic Reynolds numbers, we would need to reduce the
body force by orders of magnitude. This would reduce the average flow velocity signif-
icantly, and the necessary simulation time to gather data with sufficiently good statistics
will then increase prohibitively.

4 Results and Discussion

In this section, we present DPD simulation results and compare them with numerical cal-
culations and analytic formulas in section 2.

We start with varyingΘ in a system where the no-slip and partial-slip areas are equal,
φ2 = 0.5, and the slip length is in the intermediate regionb/L = 1.0. Figure 2 shows the
results for the effective downstream slip lengths,b

(x)
eff . Also shown are theoretical curves

calculated using Eq. (1), which can be explicitly written as

b
(x)
eff = b

‖
eff cos2 Θ+ b⊥eff sin2 Θ. (9)

Here, the eigenvalues of the slip-length tensor are obtained by numerical method and from
Eqs. (5,6). The simulation data are in good agreement with theoretical predictions, con-
firming the anisotropy of the flow and the validity of the concept of a tensorial slip for
striped surfaces.

Next we examine the effect of varying the fraction of slippery gas/liquid interface,φ2.
Figure 3(a) shows the eigenvalues,b

‖
eff andb⊥eff , of the slip-length tensor as a function of
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Figure 2: The effective downstream slip length,b
(x)
eff , as a function of tilt angleΘ for a

pattern withb/L = 1.0 andφ2 = 0.5. Symbols are simulation data. Curves are theoretical
values calculated using Eq. (9) with eigenvalues obtained by a numerical method (solid)
and by Eqs. (5,6) (dot-dashed).

φ2, for a pattern withb/L = 1.0. The results clearly demonstrate that the gas fractionφ2 is
the main factor determining the value of effective slip, which significantly increases with
the fraction of the slippery gas sectors. The theoretical curves match the simulation data
very nicely.

We further examine the weakly slippery surfaces withb/L = 0.034 and present the

longitudinal slip lengthb‖eff in Fig. 3(b). Here we compare several different theoretical
predictions: the isotropic formula Eq. (3), the new asymptotic Eq. (7), and the analyti-
cal expression Eq. (5). The results for the transverse slip lengthb⊥eff are similar to those
presented in Fig. 3(b), so we do not show them here. The valuesfor the transverse com-
ponent are smaller than those for the longitudinal component, indicating that the flow is
anisotropic.

Finally, we present the eigenvalues of the effective slip-length tensor as a function of the
slip lengthb at gas/liquid interface. The results for large values ofb are shown in Fig. 4(a).
The analytic formulas Eqs. (5,6) are shown in dot-dashed lines, which are accurate over
large range of theb value. The effective slip lengths saturate when the slip lengthb is much
greater than the stripe periodicityL, and reach the asymptotic values predicted by Eq. (4).

The simulation results and several theoretical predictions for small values ofb are
shown in Fig. 4(b). Again only the results for the longitudinal component is shown here,
while the transverse component has a similar dependence. The surface-averaged slip, pre-
dicted by Eq. (3), is well above the exact values of the longitudinal effective slip. The
analytical expressions Eq. (5), on the other hand, underestimates the effective slip. The
newly developed formulas, Eq. (7), on the other hand, gives the correct asymptotic behav-
ior in the limit of very smallb/L.
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Figure 3: The eigenvalues of the effective slip-length tensor (symbols) as a function of
gas-sector fractionφ2 for (a) b/L = 1.0 and (b)b/L = 0.034. The numerical results
are shown as solid curves. Also shown are asymptotic formulas Eq. (3) (dashed), Eq. (7)
(dotted), and the analytic expressions Eqs. (5,6) (dot-dashed).
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Figure 4: The eigenvalues of the effective slip-length tensor (symbols) as a function of
local slip lengthb at the gas/liquid interface. The top figure (a) are results for large values
of b andφ2 = 0.5, and the bottom figure (b) are results for weakly slipping surface and
φ2 = 0.3. The numerical results are shown as solid curves. Also shownare asymptotic
formulas Eqs. (3,4) (dashed), Eq. (7) (dotted), and the analytic expressions Eqs. (5,6) (dot-
dashed).
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