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Abstract Compared to macroscopic systems, fluids on the micro- and nanoscales
have a larger surface-to-volume ratio, thus the boundary condition becomes cru-
cial in determining the fluid properties. No-slip boundary condition has been ap-
plied successfully to wide ranges of macroscopic phenomena, but its validity in
microscopic scale is questionable. A more realistic description is that the flow ex-
hibits slippage at the surface, which can be characterized by a Navier slip length.
We present a tunable-slip method by implementing Navier boundary condition in
particle-based computer simulations (Dissipative Particle Dynamics as an example).
To demonstrate the validity and versatility of our method, we have investigated two
model systems: (i) the flow past a patterned surface with alternating no-slip/partial-
slip stripes and (ii) the diffusion of a spherical colloidalparticle.
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1 Introduction

Modeling fluids in small length scales from micrometer to nanometer not only is a
fundamental problem in fluid mechanics, but also plays a paramount role in modern
fluidic devices [1]. These micro- or nanofluidic devices can be found in wide range
of applications and in many different fields. Examples include the development of
inkjet printheads for xerography, lab-on-a-chip technology, and manipulation and
separation of bio-molecules. Compared to macroscopic systems, microscopic fluids
have a larger surface-to-volume ratio, therefore boundaryconditions become crucial
in determining the hydrodynamic properties. The most well-known boundary condi-
tion is the no-slip boundary condition, i.e., the fluid velocity vanishes at a fluid/solid
interface. No-slip boundary condition has been successfully applied to wide ranges
of macroscopic phenomena, but it has no microscopic justification and its validity
in small length scales is questionable. A more general boundary condition is the
Navier boundary condition, which is described in the following.

z

yO
vs

vy(z)

b

Fig. 1 Schematic representation of Navier boundary condition on aflat surface and the slip length.

Assume that a fluid/solid interface lies in thexOy plane and the fluid occupies
z> 0 half-space (Fig. 1). Let us consider the case of a laminar Couette flow in
the y-direction, with a slip velocityvs at z= 0. The tangential force per unit area
(component of the shear stressσyz), to the first-order approximation, is proportional
to the slip velocityvs,

σyz= ζsvs, (1)

whereζs is the surface friction coefficient. For Newtonian fluids, the shear stress
can also be written as

σyz= η
∂vy

∂z
, (2)

whereη is the shear viscosity of the fluid. Combining Eq. (1) and (2),one arrives
the Navier boundary condition [2]

vs =
η
ζs

∂vy

∂z
= b

∂vy

∂z
. (3)
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The degree of slippage at the surface is quantified in terms ofthe Navier slip length
b = η/ζs. No-slip boundary condition is recovered forb= 0, while for ideal fric-
tionless surface we haveb → ∞. The physical meaning of the slip length is the
distance within the solid at which the flow velocity extrapolates to zero.

2 Implementation

The main question we try to address in this contribution is the implementation of
Navier boundary condition with tunable slip length in particle-based computer sim-
ulations. Any models of a solid surface require at least two components: (a) an ex-
cluded interaction to prevent fluid particles penetrating the hard surface; and (b) an
effective interaction due to the surface friction. In the following, we shall use Dis-
sipative Particle Dynamics (DPD) [3, 4, 5] to demonstrate the tunable-slip method,
although the basic idea is quite general and can be applied toother simulation tech-
niques. In the following we only give a brief description andintroduce parameters
for late discussions. For a more detailed description, please consult the origin refer-
ence [6].

We model the impermeable surface using a pure repulsive interaction of the
Weeks-Chandler-Andersen form [7],

V(z) =

{

4ε[(σ
z )

12− (σ
z )

6+ 1
4], z< 6

√
2σ

0, z≥ 6
√

2σ
(4)

wherez is the distance between the fluid particle and the wall. The WCA parameters
also set the unit system (ε for the energy,σ for the length, andm for the particle
mass).

The interactions between the surface and fluid can be very complicated and de-
pend on the chemical details. But in the mesoscale, the main effect of the surface
is to provide friction. Inspired by the form of Eq. (1), we model the fluid/surface
friction by a dissipative force to the fluid, which depends onthe relative velocity
between the fluid particle and the wall,

FD
i =−γLωL(z)(vi − vwall). (5)

The friction constantγL is an adjustable parameter that characterizes the strengthof
the wall friction, and it can be used to vary the slip length. The position-dependent
functionωL(z) is a monotonically decreasing function of the wall-particle separa-
tion, and vanishes at certain cutoffzc to mimic the finite range of the wall interaction.
Additionally, a random force obeying the fluctuation-dissipation theorem is required
to ensure the correct equilibrium statistics,

FR
i =

√

2kBTγLωL(z)ξ i , (6)
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wherekB is the Boltzmann constant,T the temperature, andξ i a vector whose com-
ponent is a Gaussian distributed random variable with zero mean and unit variance.

The slip lengthb can be computed analytically as a function of a dimension-
less parameterα = z2

cγLρ/η , whereρ is the fluid number density [6]. For a linear
functionωL(z) = 1− z/zc, the relation is

b
zc

=
2
α
− 7

15
− 19

1800
α + · · · (7)

This formula works quite well for large values ofb, but shows deviation near the
no-slip region (b/σ ∼ 1). The slip length can also be measured by short simulations
of Poiseuille and Couette flow in a thin channel geometry. Fig. 2 shows the relation
between the slip lengthb and the wall friction parameterγL . One can then choose a
suitable value ofγL based on the requirement of the slip length.
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Fig. 2 Relation between the slip lengthb and the wall friction parameterγL . The inset shows an
enlarged portion of the region where the slip length is zero.No-slip boundary condition can be
implemented by usingγL = 5.26

√
mε/σ . Dashed curves show analytical prediction Eq. (7).

To demonstrate the validity and versatility of our method, we investigate two
model systems: the flow past a patterned surface with alternating no-slip/partial-slip
stripes (Section 3) and free diffusion of a slipping colloidal particle (Section 4).

3 Striped Surfaces

Patterned surfaces play a major role in micro- and nanofluidics. One important ex-
ample is the superhydrophobic Cassie surfaces, where no-slip and partial-slip area
arrange in a striped pattern [see Fig. 3(a)]. The no-slip region consists of fluid/solid
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Fig. 3 Sketch of the striped surface:Θ = 0 to longitudinal stripes,Θ = π/2 corresponds to trans-
verse stripes (a), and of the liquid interface in the Cassie state (b).

interface, while the partial-slip region consists of trapped gas which is stabilized
by a rough wall texture. These superhydrophobic surfaces exhibit very low friction,
and the drag reduction is associated with the large slip length over the fluid/gas
interfaces.

We simulate the superhydrophobic Cassie surface using the “gas-cushion model”
[8]. Instead of modeling the physically corrugated surface, we use aflat surface with
alternating no-slip and partial-slip boundary conditions. The value of the slip length
b over the gas sector is related to the thickness of the gas regione by

b≃ η
ηg

e, (8)

whereη andηg are shear viscosities of a gas and a liquid [see Fig. 3(b)]. Wecon-
sider a striped pattern with a periodicityL. The area fractions of the solid and gas
sectors areφ1 andφ2, respectively. For inhomogeneous surfaces, the effectiveslip
length depends on the flow directionΘ and is in general a tensorial quantitybeff.
For the special case of striped surfaces, the eigenvalues ofthe slip length tensor

correspond to the flow direction parallel to the stripes (maximum slipb‖eff) and per-
pendicular to the stripes (minimum slipb⊥eff).

We compare our simulation results with the numerical solution to the Stokes
equations and some analytical formulas. The results for theperfect-slip gas sector
(b≫ L) are well-known [9, 10]

b‖eff

L
=

2b⊥eff

L
≃ 1

π
ln

[

sec

(

πφ2

2

)]

. (9)

For arbitrary value ofb, Belyaev and Vinogradova suggested approximate expres-
sions [11],
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b‖eff

L
≃ 1

π

ln

[

sec

(

πφ2

2

)]

1+
L

πb
ln

[

sec

(

πφ2

2

)

+ tan

(

πφ2

2

)] , (10)

b⊥eff

L
≃ 1

2π

ln

[

sec

(

πφ2

2

)]

1+
L

2πb
ln

[

sec

(

πφ2

2

)

+ tan

(

πφ2

2

)] . (11)

These formulas are accurate over wide range of the parameters and recover to Eq. (9)
at largeb value.

We start with varyingΘ for patterns that has equal areas of no-slip and partial-
slip regions (φ2 = 0.5) and the slip length is in the intermediate regionb/L = 1.0.
Figure 4 shows the results for the effective downstream sliplengths,beff(Θ), and
the theoretical curve

beff(Θ) = b‖eff cos2Θ +b⊥eff sin2Θ . (12)

The simulation data are in good agreement with theoretical predictions, confirming
the anisotropy of the flow and the validity of the concept of a tensorial slip for striped
surfaces.
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Fig. 4 Effective downstream slip length,beff(Θ) as a function of tilt angleΘ for a pattern with
b/L = 1.0 andφ2 = 0.5. Symbols with error bars are simulation data. Curves are theoretical val-
ues calculated using Eq. (12) with eigenvalues obtained by anumerical method (solid) and by
Eqs. (10,11) (dot-dashed).

Next we examine the effect of varying the fraction of gas/liquid interface,φ2.

Figure 5(a) shows the effective slip lengthsb‖eff andb⊥eff as a function ofφ2. The
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striped pattern again hasb/L = 1.0. The results clearly demonstrate that the gas
fraction φ2 is the main factor in determining the value of effective slip; the slip
length increases significantly when the gas fraction increases to unity.
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Fig. 5 (a) Effective slip lengths (symbols) as a function of gas-sector fractionφ2 for b/L = 1.0.
(b) Effective slip lengths as a function of local slip lengthb for φ2 = 0.5. The numerical results
are shown as solid curves. Also shown are analytic expressions Eqs. (10,11) (dot-dashed), and
asymptotic formulas Eq. (9) (dashed lines, for (b) only).

Finally, we present the effective slip lengths as a functionof the local slip length
b at gas/liquid interface in Fig. 5(b). The pattern has equal fractions of solid and gas,
φ1 = φ2 = 0.5. The analytic formulas Eqs. (10,11) are shown in dot-dashed lines,
which are accurate over wide range ofb value. The effective slip lengths reach
the asymptotic values predicted by Eq. (9) at large values ofb/L. The excellent
agreement between the simulation data and theoretic predictions promotes studies
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of more complex systems and applications, such as thin channels with symmetric
stripes [12], anisotropic flow over weakly slipping stripes[13], trapezoidal grooves
[14], electroosmotic flows [15], polyelectrolyte electrophoresis [16, 17], and sepa-
ration of chiral particles [18].

4 Colloidal Particle

Colloidal dispersions have numerous applications in different fields such as chem-
istry, biology, medicine, and engineering [19, 20]. Betterunderstanding of the dy-
namics of colloidal particles can provide insights to improve the material properties.
Molecular simulations can shed light on the dynamic phenomena of colloidal parti-
cles in a well-defined model system. Due to the size difference between the colloids
and solvent molecules, it is difficult to simulate the systemon the smaller length
scale (the solvent), and one has to rely on coarse-graining technique to reach mean-
ingful time scales. The general idea is to couple the solute with a mesoscopic model
for Navier-Stokes fluids. One of the examples is the couplingscheme developed
by Ahlrichs and Dünweg [21], which combines a Lattice-Boltzmann approach for
the fluid and a continuum Molecular Dynamics model for the polymer chains. The
method has been extended to colloidal particles [22, 23]. Weshall discuss a similar
colloid model based on DPD.

The interactions between the colloid and fluid can be separated into two com-
ponents, similar to the case of flat surface presented in Section 2. One component
is the hard-core interaction to prevent the fluid entering the colloid. We use a pure
repulsive potential of WCA form [Eq. (4)]. The other one is the friction between
the colloid surface and the fluid, which can be modeled by a pair of dissipative
and random forces [cf. Eqs. (5, 6)]. The complication arisesfor colloidal particles
which have a curved surface. There are two possible solutions. The first is to treat
the surface as a continuous two-dimensional object and replacez in the friction force
pair by the shortest distance between the fluid particle and the curved surface. This
can be easily implemented for simple geometry such as spheres, but becomes com-
plicated for colloids with irregular shape. The second solution is to discretize the
surface by many interaction sites, whose positions are fixedin the local frame of
the colloid. These sites interact with the solvent through the DPD dissipative and
stochastic interactions, with a friction coefficientγL [Eqs. (5, 6) but withz replaced
by bead separationr]. Boundary conditions on the colloid surface can be tuned by
vary the value ofγL. In this work, we opt to the second option for better extensibil-
ity. Fig. 6 shows a representative snapshot of a colloidal particle decorated by many
surface sites.

The total force exerted on the colloid is given by the sum overall forces on the
surface sites, plus the conservative excluded volume interaction,

FC =
N

∑
i=1

[

FD
i (ri)+FR

i (ri)
]

+FWCA. (13)
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Fig. 6 Snapshot of a colloidal particle in solution. The surface sites are represented by the dark
beads, and the light beads are fluid particles. Only selective solvent beads are shown here for clarity.

Hereri denotes the position ofi-th surface sites and there areN of them. Similarly,
the torque exerted on the colloid can be written as

TC =
N

∑
i=1

[

FD
i (ri)+FR

i (ri)
]

× (ri − rcm), (14)

wherercm is the position of the colloid’s center-of-mass. Note that the excluded
volume interaction does not contribute to the torque because the associated force
points towards the center for spherical colloids, but this is in general not true for
irregular shape. The total force and torque are then used to update the position and
velocity (both translational and rotational) of the colloid at the next time step.

The diffusion constant of the colloid can be calculated fromthe velocity autocor-
relation function using the Green-Kubo relation or by a linear fit to the mean-square
displacement. Due to the periodic boundary condition implemented in simulations,
the diffusion constant for a single colloid in a finite simulation box depends on the
box size. Fig. 7(a) demonstrates the finite-size effect by plotting the mean-square
displacement as a function of time for two different simulation boxesL = 10σ and
L = 30σ .

The diffusion constant increases with increasing box size.For small simulation
box, the long-wavelength hydrodynamic modes are suppressed due to the coupling
between the colloid and its periodic images. The diffusion constant can be written
in terms of an expansion of 1/L, the reciprocal of the box size [24]

D =
kBT
6πη

(

1
R
− 2.837

L
+

4.19R2

L3 + · · ·
)

. (15)

In Fig. 7(b), simulation results of the diffusion constant are plotted in terms of 1/L.
The simulation results and the hydrodynamic theory show reasonable agreement.
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Fig. 7 (a) Mean-square displacement of a spherical colloid with radiusR= 3.0σ for two different
sizes of simulation box,L = 10σ andL = 30σ . (b) Diffusion constantD for a spherical colloid
of radiusR= 3.0σ as a function of the reciprocal of the box size 1/L. The curve is the prediction
from Eq. (15). Different symbols correspond to simulation runs with different initialization.

Most of the studies on colloid dynamics have been focus on theno-slip boundary
condition. We have investigated the response of charged colloids under alternating
electric fields [25, 26, 27, 28]. No-slip is valid for large colloids, but may be ques-
tionable for nanometer-sized or hydrophobic particles. Furthermore, one can adjust
the boundary condition by modifying the surface properties. One advantage of our
colloid model is the ability to adjust the boundary condition from no-slip to full-slip
by changing the friction coefficientγL . Fig. 8 illustrates the change of the diffusion
constant by varyingγL in a simulation boxL = 30σ . This freedom provides oppor-
tunities to study the effect of hydrodynamic slip on the colloid dynamics [29, 30].
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5 Summary

We have presented a coarse-grained method to implement Navier boundary condi-
tion with arbitrary slip length in particle-based simulations. We have validated our
method by simulating a flat homogeneous surface and proposedan analytical rela-
tion between the slip length and simulation parameters. To illustrate the versatility
of the method, we extend the method to inhomogeneous surfaces by investigating
Newtonian flow over superhydrophobic striped surface, and to curved surfaces by
studying the dynamics of single spherical colloid. Our method provides a general
tool to exam the slip-dependent phenomena in particle-based simulations and should
be suitable to study more complex system, for example, flow over structured surface
or channel and dynamics of aspherical colloids.
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