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Abstract Compared to macroscopic systems, fluids on the micro- andscaies
have a larger surface-to-volume ratio, thus the boundanglition becomes cru-
cial in determining the fluid properties. No-slip boundaopndition has been ap-
plied successfully to wide ranges of macroscopic phenomaumaits validity in
microscopic scale is questionable. A more realistic dpsion is that the flow ex-
hibits slippage at the surface, which can be characterigea Wavier slip length.
We present a tunable-slip method by implementing Naviemblawy condition in
particle-based computer simulations (Dissipative Plarfiynamics as an example).
To demonstrate the validity and versatility of our method,lvave investigated two
model systems: (i) the flow past a patterned surface withreltang no-slip/partial-
slip stripes and (ii) the diffusion of a spherical colloigelrticle.
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1 Introduction

Modeling fluids in small length scales from micrometer to oraeter not only is a
fundamental problem in fluid mechanics, but also plays arpatent role in modern
fluidic devices [1]. These micro- or nanofluidic devices carfdund in wide range
of applications and in many different fields. Examples idelthe development of
inkjet printheads for xerography, lab-on-a-chip techggland manipulation and
separation of bio-molecules. Compared to macroscopiesystmicroscopic fluids
have a larger surface-to-volume ratio, therefore boundanglitions become crucial
in determining the hydrodynamic properties. The most Wwetiwn boundary condi-
tion is the no-slip boundary condition, i.e., the fluid vétpwanishes at a fluid/solid
interface. No-slip boundary condition has been succdgsipblied to wide ranges
of macroscopic phenomena, but it has no microscopic justifio and its validity

in small length scales is questionable. A more general bawyncondition is the

Navier boundary condition, which is described in the folilogy

Fig. 1 Schematic representation of Navier boundary condition fet aurface and the slip length.

Assume that a fluid/solid interface lies in tk®y plane and the fluid occupies
z > 0 half-space (Fig. 1). Let us consider the case of a laminare@e flow in
the y-direction, with a slip velocitys at z= 0. The tangential force per unit area
(component of the shear strasg), to the first-order approximation, is proportional
to the slip velocityvs,
Oyz = {sVs, (1)

where(s is the surface friction coefficient. For Newtonian fluidse thhear stress
can also be written as P
Vy
Oy;=N—=, 2
y2= 1> (2)

wheren is the shear viscosity of the fluid. Combining Eq. (1) and ¢ arrives
the Navier boundary condition [2]

_nhow_ dv
vsfZs 57 *bdz' 3)
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The degree of slippage at the surface is quantified in terrtteedflavier slip length

b = n/{s. No-slip boundary condition is recovered foe= 0, while for ideal fric-
tionless surface we have— . The physical meaning of the slip length is the
distance within the solid at which the flow velocity extragiels to zero.

2 Implementation

The main question we try to address in this contribution &ithplementation of
Navier boundary condition with tunable slip length in pedibased computer sim-
ulations. Any models of a solid surface require at least tammponents: (a) an ex-
cluded interaction to prevent fluid particles penetratimghard surface; and (b) an
effective interaction due to the surface friction. In thédaing, we shall use Dis-
sipative Particle Dynamics (DPD) [3, 4, 5] to demonstratettmable-slip method,
although the basic idea is quite general and can be applietthés simulation tech-
nigues. In the following we only give a brief description anttoduce parameters
for late discussions. For a more detailed description sgleansult the origin refer-
ence [6].

We model the impermeable surface using a pure repulsiveaittien of the
Weeks-Chandler-Andersen form [7],

4((9)2-(9)°+3), z<V20

vio-{ ! ol @

wherezis the distance between the fluid particle and the wall. ThedVg&ameters
also set the unit systeng for the energyo for the length, andn for the particle
mass).

The interactions between the surface and fluid can be veryplicated and de-
pend on the chemical details. But in the mesoscale, the nfigict ®f the surface
is to provide friction. Inspired by the form of Eq. (1), we nedhe fluid/surface
friction by a dissipative force to the fluid, which dependstba relative velocity
between the fluid particle and the wall,

FP = —y L (2) (Vi — Vwall)- ()

The friction constanyf is an adjustable parameter that characterizes the strehgth
the wall friction, and it can be used to vary the slip lengtheposition-dependent
function w_(z) is a monotonically decreasing function of the wall-pagiskepara-
tion, and vanishes at certain cutaffto mimic the finite range of the wall interaction.
Additionally, a random force obeying the fluctuation-disgion theorem is required
to ensure the correct equilibrium statistics,

FR— /2keTy L (2)€;, (6)
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wherekg is the Boltzmann constari, the temperature, anf] a vector whose com-
ponent is a Gaussian distributed random variable with zezamand unit variance.

The slip lengthb can be computed analytically as a function of a dimension-
less parameter = Z2y p/n, wherep is the fluid number density [6]. For a linear
functionw_(z) = 1— z/z, the relation is

b 2 7 19

2 _ = a4 7
% o 15 1800" " (7)

This formula works quite well for large values bf but shows deviation near the
no-slip region b/o ~ 1). The slip length can also be measured by short simulations
of Poiseuille and Couette flow in a thin channel geometry. Eighows the relation
between the slip lengthand the wall friction parametgf . One can then choose a
suitable value off based on the requirement of the slip length.
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Fig. 2 Relation between the slip lengthand the wall friction parametef . The inset shows an
enlarged portion of the region where the slip length is z&l-slip boundary condition can be
implemented by usingi = 5.26,/me/o. Dashed curves show analytical prediction Eq. (7).

To demonstrate the validity and versatility of our metho, nwvestigate two
model systems: the flow past a patterned surface with atiagiao-slip/partial-slip
stripes (Section 3) and free diffusion of a slipping colldigarticle (Section 4).

3 Striped Surfaces

Patterned surfaces play a major role in micro- and nanoflsiddne important ex-
ample is the superhydrophobic Cassie surfaces, wherémarsl partial-slip area
arrange in a striped pattern [see Fig. 3(a)]. The no-slipregonsists of fluid/solid
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(b)

Fig. 3 Sketch of the striped surfac@. = 0 to longitudinal stripes® = 11/2 corresponds to trans-
verse stripes (a), and of the liquid interface in the Cadsite £b).

interface, while the partial-slip region consists of tragmas which is stabilized
by a rough wall texture. These superhydrophobic surfacebigxery low friction,
and the drag reduction is associated with the large sliptlenger the fluid/gas
interfaces.

We simulate the superhydrophobic Cassie surface usingydsecushion model”
[8]. Instead of modeling the physically corrugated surfageuse dlat surface with
alternating no-slip and partial-slip boundary conditioRise value of the slip length
b over the gas sector is related to the thickness of the gasiredy

~ N
b s e (8)
wheren andnyg are shear viscosities of a gas and a liquid [see Fig. 3(b)]ctve
sider a striped pattern with a periodicity The area fractions of the solid and gas
sectors arep and ¢, respectively. For inhomogeneous surfaces, the effestipe
length depends on the flow directi@ and is in general a tensorial quantys.
For the special case of striped surfaces, the eigenvaludgseddlip length tensor
correspond to the flow direction parallel to the stripes (imaxn slip b!}ﬁ) and per-
pendicular to the stripes (minimum sligy).
We compare our simulation results with the numerical sofuto the Stokes
equations and some analytical formulas. The results fopéréect-slip gas sector
(b> L) are well-known [9, 10]

bey _ 2bg 1 %
=T ° Eln {sec(T)} . 9

For arbitrary value ob, Belyaev and Vinogradova suggested approximate expres-
sions [11],
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g
oy 1 plF)]
Tzﬁl L, R\ |, on( T2)] (10)
T [SQC(T) ' a”(?)]
In {sec(@)]
b—éff ~ 1 2 (12)

2m L ) e\ |’
1+ Ebln [sec<7) +tan<7)}
These formulas are accurate over wide range of the parasateéirecover to Eq. (9)
at largeb value.
We start with varying® for patterns that has equal areas of no-slip and partial-
slip regions (@, = 0.5) and the slip length is in the intermediate regipih. = 1.0.

Figure 4 shows the results for the effective downstreamlsligths,be (@), and
the theoretical curve

ber(©) = bl co2 O + blysint@. (12)

The simulation data are in good agreement with theoretiealiptions, confirming
the anisotropy of the flow and the validity of the concept adrasbrial slip for striped
surfaces.
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Fig. 4 Effective downstream slip lengthes(©) as a function of tilt angle for a pattern with
b/L = 1.0 andg = 0.5. Symbols with error bars are simulation data. Curves aerdiical val-
ues calculated using Eg. (12) with eigenvalues obtained byraerical method (solid) and by
Egs. (10,11) (dot-dashed).

Next we examine the effect of varying the fraction of gasiiihinterface,@.
Figure 5(a) shows the effective slip Iengﬂb&;r and béﬁ as a function ofg,. The
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striped pattern again hds/'L = 1.0. The results clearly demonstrate that the gas
fraction ¢ is the main factor in determining the value of effective shipe slip
length increases significantly when the gas fraction irsgedo unity.
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Fig. 5 (a) Effective slip lengths (symbols) as a function of gastaefractiong, for b/L = 1.0.
(b) Effective slip lengths as a function of local slip lendgfior ¢» = 0.5. The numerical results
are shown as solid curves. Also shown are analytic expresdtms. (10,11) (dot-dashed), and
asymptotic formulas Eg. (9) (dashed lines, for (b) only).

Finally, we present the effective slip lengths as a functibtine local slip length
b at gas/liquid interface in Fig. 5(b). The pattern has eguaitfons of solid and gas,
@ = @ = 0.5. The analytic formulas Egs. (10,11) are shown in dot-désnes,
which are accurate over wide range lofvalue. The effective slip lengths reach
the asymptotic values predicted by Eq. (9) at large valuels/bf The excellent
agreement between the simulation data and theoretic pi@tigromotes studies
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of more complex systems and applications, such as thin elemith symmetric
stripes [12], anisotropic flow over weakly slipping strig&8], trapezoidal grooves
[14], electroosmotic flows [15], polyelectrolyte electtmpesis [16, 17], and sepa-
ration of chiral particles [18].

4 Colloidal Particle

Colloidal dispersions have numerous applications in dhffé fields such as chem-
istry, biology, medicine, and engineering [19, 20]. Bettaderstanding of the dy-
namics of colloidal particles can provide insights to imgthe material properties.
Molecular simulations can shed light on the dynamic phenaé colloidal parti-
cles in a well-defined model system. Due to the size diffezdratween the colloids
and solvent molecules, it is difficult to simulate the systemthe smaller length
scale (the solvent), and one has to rely on coarse-graiaaimtque to reach mean-
ingful time scales. The general idea is to couple the solitteaumesoscopic model
for Navier-Stokes fluids. One of the examples is the coupdicigeme developed
by Ahlrichs and Dinweg [21], which combines a Lattice-Boiann approach for
the fluid and a continuum Molecular Dynamics model for theypwr chains. The
method has been extended to colloidal particles [22, 23]shéd discuss a similar
colloid model based on DPD.

The interactions between the colloid and fluid can be separato two com-
ponents, similar to the case of flat surface presented iridbe2t One component
is the hard-core interaction to prevent the fluid enterirggablloid. We use a pure
repulsive potential of WCA form [Eq. (4)]. The other one i®tfriction between
the colloid surface and the fluid, which can be modeled by a pladissipative
and random forces [cf. Egs. (5, 6)]. The complication arfsexolloidal particles
which have a curved surface. There are two possible sokitibime first is to treat
the surface as a continuous two-dimensional object andeepin the friction force
pair by the shortest distance between the fluid particle bed¢trved surface. This
can be easily implemented for simple geometry such as sphHarebecomes com-
plicated for colloids with irregular shape. The second sotuis to discretize the
surface by many interaction sites, whose positions are fixede local frame of
the colloid. These sites interact with the solvent through DPD dissipative and
stochastic interactions, with a friction coefficignt[Egs. (5, 6) but withz replaced
by bead separatior]. Boundary conditions on the colloid surface can be tuned by
vary the value of4 . In this work, we opt to the second option for better exteihksib
ity. Fig. 6 shows a representative snapshot of a colloiddigi@ decorated by many
surface sites.

The total force exerted on the colloid is given by the sum @lforces on the
surface sites, plus the conservative excluded volumedatien,

Fc= i [FP(ri)+FR(ri)] + FVCA, (13)
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Fig. 6 Snapshot of a colloidal particle in solution. The surfadessare represented by the dark
beads, and the light beads are fluid particles. Only sekestiwvent beads are shown here for clarity.

Herer; denotes the position @fth surface sites and there afeof them. Similarly,
the torque exerted on the colloid can be written as

Tczi [FP(ri) + FR(ri)] x (ri —rem), (14)

whererqm is the position of the colloid’s center-of-mass. Note tha excluded
volume interaction does not contribute to the torque bexdlus associated force
points towards the center for spherical colloids, but thifgnigeneral not true for
irregular shape. The total force and torque are then usegdate the position and
velocity (both translational and rotational) of the call@it the next time step.

The diffusion constant of the colloid can be calculated ftbmvelocity autocor-
relation function using the Green-Kubo relation or by adinfit to the mean-square
displacement. Due to the periodic boundary condition imm@eted in simulations,
the diffusion constant for a single colloid in a finite simiida box depends on the
box size. Fig. 7(a) demonstrates the finite-size effect bytipg the mean-square
displacement as a function of time for two different simigiatboxed. = 100 and
L =300.

The diffusion constant increases with increasing box s$tpe.small simulation
box, the long-wavelength hydrodynamic modes are suppteise to the coupling
between the colloid and its periodic images. The diffusionstant can be written
in terms of an expansion of/L, the reciprocal of the box size [24]

2
o keT (1_2.837 4.19R +) (15)

~6m \R R

In Fig. 7(b), simulation results of the diffusion constarg plotted in terms of AL.
The simulation results and the hydrodynamic theory showaeable agreement.
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Fig. 7 (a) Mean-square displacement of a spherical colloid withusR = 3.0 0 for two different
sizes of simulation boX, = 100 andL = 300. (b) Diffusion constanD for a spherical colloid
of radiusR = 3.00 as a function of the reciprocal of the box siz&.1The curve is the prediction
from Eq. (15). Different symbols correspond to simulationg with different initialization.

Most of the studies on colloid dynamics have been focus ondhgip boundary
condition. We have investigated the response of chargddidslunder alternating
electric fields [25, 26, 27, 28]. No-slip is valid for largelloids, but may be ques-
tionable for nanometer-sized or hydrophobic particlestif@rmore, one can adjust
the boundary condition by modifying the surface propert@se advantage of our
colloid model is the ability to adjust the boundary conditfoom no-slip to full-slip
by changing the friction coefficient . Fig. 8 illustrates the change of the diffusion
constant by varyingi in a simulation boxt = 300. This freedom provides oppor-
tunities to study the effect of hydrodynamic slip on the anlldynamics [29, 30].
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Fig. 8 Diffusion constanD for a spherical colloid of radiuR = 3.0 0 as a function of the surface-
fluid DPD friction coefficienty . The simulation box has a size lof= 300. No-slip is realized for

w >10y/me/o.

5 Summary

We have presented a coarse-grained method to implemen¢Navindary condi-
tion with arbitrary slip length in particle-based simutats. We have validated our
method by simulating a flat homogeneous surface and pro@osadalytical rela-
tion between the slip length and simulation parametersllUstiate the versatility
of the method, we extend the method to inhomogeneous sserigcavestigating
Newtonian flow over superhydrophobic striped surface, anclitved surfaces by
studying the dynamics of single spherical colloid. Our metiprovides a general
tool to exam the slip-dependent phenomenain particleebsisrulations and should
be suitable to study more complex system, for example, flasv structured surface
or channel and dynamics of aspherical colloids.
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