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Abstract.
Poly(ethylene-glycol) (PEG) is a polymer used to coat therapeutic preparations, like drugs

or drug nanocarriers, and improve their efficacy. This effect is probably due to a reduction of
the interactions of the coated species with the host organism. Nevertheless, experiments show
that PEGylated materials do interact with the surrounding biological milieu, and in particular
with blood proteins. Here, we use atomistic molecular dynamics simulations to characterize the
interactions between the polymer and several blood proteins. In these simulations, the proteins
are immersed in a mixture of PEG and water molecules. We observe how PEG distributes
around the protein surface and measure PEG-protein interactions in terms of preferential
binding coefficients.

1. Introduction
Poly(ethylene-glycol) (PEG) is a non-toxic polymer highly soluble both in water and non-
polar solvents and finds application in a broad variety of contexts, including for example, as
dispersant in toothpastes, lubricant in skin creams and anti-foaming agent in the food industry.
In biomedical applications, PEG, when attached to a therapeutic molecule or nanoparticle
(PEGylation), confers them extra resistance to degradation, extended blood clearance time and,
ultimately, improved therapeutic efficacy. These improvements are obtained by a combination
of factors like increased overall volume, which prevents renal clearance, but also a reduction of
unspecific interactions with the surrounding environment. This last phenomenon goes under the
name of stealth effect, and results in the ability of PEG to screen the PEGylated species from
the immune response of the host organism.

Although PEG helps reduce unspecific interactions with the surrounding biological milieu, it
does not remove them completely. It has been shown that, also due the constant exposure to
PEG-containing products, the organism can produce antibodies against PEG. In addition, many
different proteins adsorb on PEG-coated nanoparticles, as soon as these enter in contact with
blood[1]. A molecular understanding of these protein adsorption phenomena on PEG-coated
surfaces and more in general of the interactions between PEG and proteins is still missing.

Atomistic molecular dynamics simulations can help to fill this gap. They have been
successfully used to address protein adsorption on a large variety of surfaces [2, 3], as well as
the behavior of specific blood proteins on model surfaces[4, 5]. While accurate atomistic models
and force field already exist for many metallic, metal-oxides and some polymeric surfaces[3], the
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surface exposed by PEGylated species poses extra challenges due to its brushy nature. These
challenges have been recently addressed by simulating the proteins of interest in a mixture of
water and PEG molecules[6, 7]. With this approach, which is similar in spirit to what has been
done in computational drug screening exercises[8, 9], the possible binding modes of PEG with
the protein surface are sampled accurately and their relative importance is determined from the
simulations.

Here, we extend the approach developed in [6] to additional blood proteins and use it to
determine their preferential binding coefficient for PEG.

2. Methods
Molecular dynamics simulations All the simulations were carried out using the program
NAMD [10] and the charmm27 force field[11] with the extension for PEG[12]. Tip3p[13] was
used as model for the explicit treatment of water. An integration time step of 1 fs was used across
the simulations. Simulations were carried out using periodic boundary conditions. A pressure
of 1atm and a temperature of 300K were maintained constant during the simulations using the
Langevin piston algorithm and Langevin thermostat [14, 15]. A cutoff of 1.2 nm was used for
the non-bonded interactions with a switch function. Long range electrostatic interactions were
treated using the smooth particle mesh Ewald (PME) method [16] with a grid spacing of about
0.1 nm. To prepare the PEG-water mixture, 64 PEG molecules (H−[O−CH2−CH2]n−OH, with
n either 4 or 7) were placed on a 4x4x4 grid with 1.0 nm spacing between grid points. Then
1 ns high temperature (700K) simulations in vacuum with damped electrostatics interactions
(dielectric constant 200) were run to randomize the initial dihedral distribution of the PEG
molecules. The PEG molecules were then immersed in a box of water molecules and sodium and
chlorine ions were added to reach physiological concentration (0.15 M). Mixtures with different
concentrations of PEG were obtained by changing the size of the water box surrounding the PEG
molecules. The prepared mixtures were then equilibrated first at high temperature (373K) for
1.0 ns and then at 300K for 1.0 ns. Several plasma proteins have been considered: human serum
albumin(HSA), bovine serum albumin(BSA), transferrin(TF) and apolipoprotein A1 (ApoA1).
The initial coordinates of the proteins were taken from the Protein Data Bank(PDB) (see Tab. 1
for the list of PDBids). Each protein was immersed in a box filled by replicating the coordinates
of the PEG-water mixtures obtained before in the three space directions and removing mixture
atoms in close contact with protein atoms. The final PEG concentration in the simulation boxes
is reported in Tab. 1. The size of the boxes was large enough to leave at least 1.0 nm from each
protein atom and the box boundary. In the case of HSA, larger box sizes with 1.5 and 2.0 nm
distances between protein and box boundary were simulated to investigate the dependence of
the simulation results upon box size. The total charge of the systems was further neutralized
by changing an adequate number of water molecules into ions. The complete systems were then
minimized using the steepest descent algorithm for 10000 steps with harmonic restraints on the
heavy atoms of the proteins. Then the systems were equilibrated at room temperature and
pressure for 1.0 ns during which the harmonic restraints were gradually removed and for 1.0 ns
without restraints. Finally production runs were started with 4 or 5 replicas for each system.
Length of the runs ranged from 100 to 200 ns (see tab. 1).

Analysis of trajectories The direct PEG-protein interactions along the simulations were
measured using the NAMD pair-interaction utility. The time series along the trajectories of
the number of PEG and water heavy atoms found within a distance d of the protein or of each
amino acid type was determined using the ”pbwithin” selection command of VMD. The ratio
of these numbers was compared to the ratio between all the PEG and water heavy atoms in the
simulation box (bulk ratio). A PEG/water ratio larger than bulk for an amino acid implies the
presence of an effective attractive interaction between PEG and the amino acid. On the other
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Table 1. List of the simulations performed
System Box size (Å) N. Atoms PEG length [PEG] (g/ml) Simulation time (ns)

HSA+lipids 103 114000 4 0.13 4 x 105
HSA 98.8 100881 4 0.08 4 x 100

98.2 99301 4 0.11 4 x 100
108.6 134134 4 0.12 4 x 125
118.2 172541 4 0.12 5 x 100

BSA 103.6 116489 4 0.11 4 x 100
Trasferrin 108 132009 4 0.11 5 x 200

108.7 134663 4 0.07 5 x 200
108.4 133303 7 0.07 5 x 200
108.8 134372 7 0.04 5 x 200

ApoA1 192 739653 4 0.13 4 x ≈ 100

hand, amino acids with a PEG/Water ratio smaller than bulk exert an effective repulsion for
PEG. For the residue specific PEG/Water ratio calculations we used d = 5.0Å. The preferential
binding coefficient measures the excess of PEG found in the local environment of the protein,
i.e., in its vicinity (Fig. 1) and was defined as:

Γ = [PEG]L − [H2O]L
[PEG]B
[H2O]B

(1)

where [·]L is the concentration of PEG or water in the vicinity of the protein and [·]B the
concentration in the bulk, that is, away from the protein. The local environment of the protein
is defined as a shell of thickness d around the protein. Γ converges for d ≥ 9.0Å, which is the
value we used for these calculations.

Figure 1. The concentration
of PEG in the local environment
of the protein and in the bulk
solution are used for the measure of
the preferential binding coefficient
(Eq. 1).

3. Results and Discussion
Four different plasma proteins have been simulated immersed in a PEG/water mixture, as
reported in section 2. Three of them (HSA, BSA, TF) are relatively abundant in plasma but not
on the surface of PEGylated nanoparticles and one (ApoA1) is abundant on the nanoparticle [1].
The simulations were performed at different PEG concentrations to verify a possible dependence
of the results on this parameter. Additional simulations explored the role of PEG length and
box size. Each simulation was repeated 4 to 5 times to improve the statistical accuracy of the
results. Only short PEG molecules were considered (4 or 7 monomers), which diffuse fast and
allow for a thorough exploration of the possible binding modes with the protein. This insures
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Figure 2. Cartoons of three different simulated proteins (cyan) where regions with PEG density
larger than twice as in the bulk have been highlighted (dark blue). Left and right and center
pictures represent different views of the proteins. Negatively charged residues are highlighted
in red. In the case of ApoA1, the lipids present in the apolipoprotein are also rendered as a
continuous surface.

that the observed quantities converge in the accessible simulation times (100ns-200ns). It is
worth noting that, since the persistence length (3.8Å) of PEG is comparable with the distance
between monomers, longer PEG chains are expected to explore the same binding modes as the
shorter chains simulated here. The simulations show that the protein structures are not affected
by the presence of PEG. The average root mean square deviation with respect to the starting
structure or, in the case of ApoA1 to a control run in pure water, is in agreement with native
state fluctuations of proteins of similar size (3-5Å for HSA, BSA and TF).

PEG molecules in the simulations reach and leave the surface of the protein continuously,
in a rather dynamical equilibrium. However, some regions of the surface are more frequently
populated by PEG (Fig. 2).

We, then, analyzed in more detail the possible origin of the observed uneven distribution of
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PEG on the protein surface. We hypothesized that each amino-acid type may have a different
affinity for PEG molecules. To test the hypothesis, we measured the average ratio between
the number of PEG and water heavy atoms (PEG/Water ratio) in a 5.0Å shell surrounding
each amino acid (Fig. 3). The data show that some amino acids are more likely to have a
concentration of PEG higher than bulk, while others have a smaller concentration. In other
words, some amino acids exert an effective attraction for PEG while other exert a repulsion.
The PEG-amino acid interaction pattern look also very similar across the different simulations.
Indeed, we verified that the the residue-specific PEG/Water ratio, normalized to the bulk value
in each simulation, are highly correlated across the simulations, at least for the most exposed
amino acids (Fig. 4). These information, obtained from similar simulations, allowed us to
describe PEG-protein interactions with a simplified model based on the solvent accessibility of
each amino acid on the protein surface[6].
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Figure 3. Ratio between PEG
heavy atoms and water molecules
within 5Å of each residue types vs
sum of PEG+water (indicating the
degree of exposure of each residues
type). Negatively charged residues
”repel” PEG.
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A further analysis of the data consists in the measurements of the preferential binding
coefficient of each protein for PEG. Preferential binding coefficients are derived from the
Kirkwood-Buff integrals of the pair correlation functions in a multi-component system[17]. In
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particular they measure the excess number of cosolvent molecules in the vicinity of each protein
molecule, thus they are positive in case of a preferential binding of the cosolvent to the protein,
and negative otherwise. Preferential binding coefficients are thermodynamic parameters that
can be accessed experimentally through high precision densitometry experiments[18], differential
scanning calorimetry[19] and vapor pressure osmometry[20]. In the present case, they report
the affinity of each protein for the cosolvent (PEG) versus the solvent (water) and can be
approximated using eq. 1[21]. The measurements we have performed using the simulation data
(Tab. 2) show in most cases positive coefficients very close to zero, indicating a very weak
preference of the analyzed proteins for PEG.

Table 2. Preferential binding coefficients measured along the simulations
System Box size (Å) PEG length [PEG] (g/ml) Γ (n.mol.)

HSA+lipids 103 4 0.13 3.4 (1.2)
HSA 98.8 4 0.08 5.0 (0.8)

98.2 4 0.11 7.0 (1.3)
108.6 4 0.12 2.9 (0.9)
118.2 4 0.12 -0.1 (1.1)

BSA 103.6 4 0.11 0.0 (1.0)
Trasferrin 108 4 0.11 4.8 (0.9)

108.7 4 0.07 7.5 (1.0)
108.4 7 0.07 4.7 (0.7)
108.8 7 0.04 2.9 (0.7)

ApoA1 192 4 0.13 -1.2 (1.6)

4. Conclusions
Here we show how atomistic molecular dynamics simulations can be used fruitfully to assess
the interaction of plasma proteins with PEG. The simulations reveal that the interaction
patterns with surface amino acids are similar across the different proteins and the different
simulation conditions analyzed here. This fact has allowed for building simplified models of
protein interactions with PEG[6]. The simulations provide also direct measurements of the
preferential binding coefficients which could be assessed experimentally to test and help improve
the available force fields. The approach used in the present work is rather general and could
be extended to evaluate interactions of proteins with other polymers that, like PEG, are highly
soluble in waters and do not induce large conformational changes to proteins. Indeed, large
efforts are being made to identify polymers that could replace PEG in biomedical applications
and solve the issues related to its possible long-term toxicity and nonbiodegradability. We expect
the techniques developed here to help in that direction.
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