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Abstract

A new variational method is proposed to investigate the dynamics of the thin film in a coating

flow where a liquid is delivered through a fixed slot gap onto a moving substrate. A simplified ODE

system has also been derived for the evolution of the thin film whose thickness hf is asymptotically

constant behind the coating front. We calculate the phase diagram as well as the film profiles and

approximate the film thickness theoretically which is found consistent with the well-known scaling

law as Ca2/3.
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1. Introduction

A film is deposited on a substrate which is moving with speed of U below a reservoir of viscous liquid

under the driven pressure P
in

as illustrated in Fig. 1. If the gap distance h0 is su�ciently small for gravity

to be negligible, a thin film of fluid is formed with a uniform thickness h

f

along the substrate between

the front and the rear meniscus. It is important to know the parameters that determine the thickness

of the coating film, which must be controlled precisely in many applications. This set-up has received a

lot of attention in the context of die coating and numerous extensions have been developed [1–3] since

the original work by Landau & Levich [4]. An important dimensionless parameter in these problems is

the capillary number defined by Ca = U⌘/�, where ⌘ and � are the viscosity and the surface tension of

the fluid. It has been shown that when the capillary number Ca is small, the thickness of the film, h
f

,

satisfies the scaling law as h
f

/ Ca

2/3. We shall confine our attention here to wetting liquids.

Similar scaling relation is known for other problems. Brethertion [5] studied the propagation of a

long bubble through a capillary filled with liquid. Using a lubrication approximation coupled with surface

deformation of the bubble, he has shown that the thickness of the fluid film obeys the two-thirds power

law. Aussillous and Quéré [6] reported more experimental data and analyzed the behavior using scaling

arguments.

The withdrawal of a solid substrate from a liquid reservoir is still a very active research subject, due

to the technological importance in controlling the homogeneity and thickness in multi-layer coating in

various applications. We refer to [7] for a recent review on the coating problem.

Fig. 1. Sketch of the coating system under consideration: driven by the pressure Pin in the reservoir, a flat film of

the constant thickness hf is dragged out on the moving substrate with speed U .

In this paper, we will study the dynamics of the thin film in the coating problem shown in Fig. 1

using Onsager principle. The time evolution of the thin film is determined by a variational principle, i.e.,

by minimizing a certain functional with respect to the film shape change. Combined with the lubrication

approximation, the thin film evolution equation governing the dynamics of the liquid film will be derived.

In order to investigate the properties of the system dynamics, we carry out numerical simulations of the

thin-film evolution equation. For small capillary number, the theoretical prediction can be obtained. We

expect that the variational method presented here will provide additional insights to many other problems

in coating because of its simplicity and susceptibility to asymptotic analysis.
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2. Evolution equation for thin film in coating

We shall first briefly describe the variational principle we shall use in this paper. Detailed descrip-

tion can be found in review papers and textbook [8,9]. Consider a Stokesian hydrodynamic system which

includes many boundaries (boundary between fluid and solid, fluid and air, or between two immiscible flu-

ids). If the boundaries are moving, driven by certain potential forces, such as gravity, surface tension, etc.,

the evolution of the system can be determined by the following principle: Let a(t) = {a1(t), a2(t), ...aN (t)}

be a set of the parameters which specify the position of the boundaries. The time evolution of the system,

i.e., the time derivative ȧ(t) = {ȧ1(t), ȧ2(t), ...ȧN (t)} is determined by the minimum condition for the

following Rayleighian function of ȧ,

R(ȧ, a) = �(ȧ, a) +
X

i

@A

@a

i

ȧ

i

(1)

where A(a) is the potential energy of the system, and �(ȧ, a) is the energy dissipation function, defined

as the half of the minimum of the energy dissipated per unit time in the fluid when the boundary is

changing at the rate ȧ. Since the fluid obeys Stokesian dynamics, �(ȧ, a) is a quadratic function of ȧ.

The minimum condition of eq.(1)
@�

@ȧ

i

+
@A

@a

i

= 0 (2)

represents the force balance of two kinds of forces, the hydrodynamic frictional force @�/@ȧ
i

, and the

potential force �@A/@a

i

in the generalized coordinate.

The above variational principle can be proven directly from the basic equations of Stokesian hydro-

dynamics [9]. It can also be regarded as a special form of Onsager principle which describes the time

evolution of non-equilibrium system characterized by certain set of slow variables [9]. Onsager principle

has been successfully applied to various soft matter systems [10–17].

Let us consider the evolution of the thin film in Fig. 1. Let h(x, t) be the thickness of the liquid

film at point x and time t. The free energy of the system is written as a functional of h(x, t) by the sum

of the wetting energy and the potential energy,

A =
�

2

Z 1

0

✓
@h

@x

◆2

dx� P

in

Z 1

0
hdx, (3)

where � is the surface tension, and P

in

stands for the pressure in the bulk. Here we have assumed the

substrate is fully wetted. By the lubrication approximation, let v(x, t) be the depth averaged velocity of

the fluid. The conservation condition of the fluid is written as

ḣ = � @

@x

(hv). (4)

The height function h(x, t) satisfies the corresponding boundary conditions,

h(0, t) = h0, h(1, t) = 0. (5)

By equation (4), the following expression for Ȧ can be obtained:

Ȧ = �

Z 1

0

@h

@x

@ḣ

@x

dx� P

in

Z 1

0
ḣdx

= ��

@

2
h

@x

2
hv

����
x=0

� P

in

hv

����
x=0

� �

Z 1

0

@

3
h

@x

3
hvdx. (6)

3



Using the lubrication approximation, the energy dissipation function is constructed by

� =

Z 1

0


3⌘

2h
(v � U)2

�
dx, (7)

where ⌘ is the viscosity of the fluid and U is the speed of the moving substrate.

The Onsager principle (2) indicates that v is determined by @�/@v + @Ȧ/@v = 0,

v = U +
�

3⌘
h

2 @
3
h

@x

3
, (8)

and on the boundary, x = 0,
@

2
h

@x

2

����
x=0

=
�P

in

�

. (9)

Substituting the velocity (8) into the conservation law (4), the evolution equation for the film thickness

h(x, t) can be expressed as

ḣ = � @

@x


h

3

3

✓
@

3
h

@x

3

◆
+Cah

�
, (10)

where Ca = U/U

⇤ represents the capillary number with U

⇤ = �/⌘ being the characteristic capillary

velocity. The capillary number Ca measures the relative size of viscous drag and capillary retention in

the film.

We solve the equation (10) subject to boundary conditions (5) and (9) numerically. The calculated

film profiles at successive times are shown in Fig. 2. Not surprisingly, a film of asymptotically constant

thickness has been developed quickly.
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Fig. 2. The calculated film profiles at successive times with Ca = 1.0 ⇥ 10�3, 1.0 ⇥ 10�2, 1.0 ⇥ 10�1 and P =

�Pinh0/� = 1.0. Length scaled by h0.

4



In Fig. 3 , we have plotted the film thickness h

f

/h0 solved numerically by the equation (10) with

di↵erent Ca. The original 2/3 power law is recovered only for very small capillary number Ca and large

negative pressure P. The contour map of the film thickness in the parameter space (P,Ca) is shown in

the right side of Fig. 3.
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Fig. 3. (color online) Left: film thickness hf/h0 as a function of Ca. Di↵erent colored with symbols represent the

numerical results for di↵erent driving pressure P = �Pinh0/�. Solid lines without symbols represent the 2/3 power

law. Right: Contour map of the film thickness in the parameter space (P, Ca).

3. Approximating thickness of the film

The dissipation in the thin film takes place mostly in the intermediate region which connects the

planar film and the bulk fluid, so-called dynamical meniscus (Fig. 1). Here we proposed a simplified

model with a few slow variables, aiming to capture the evolution of the dynamical meniscus. We assume

a simple parabolic formulation, where h(x, t) is given by

h(x, t) =

8
><

>:

1
2(t) (x1(t)� x)2 + h

f

(t) 0  x  x1(t)

h

f

(t) x1(t)  x

(11)

where (t), x1(t) and h

f

(t) are the three parameters characterizing the shape of the film. The dynamical

meniscus merges with the planar film of thickness h
f

(t) at the position x = x1(t), as sketched in Fig. 1.

The boundary condition, h(0, t) = h0, constrains that only two parameters are independent. If (t) and

x1(t) are chosen as the unknown variables, then h

f

(t) = h0 � 1
2(t)x

2
1(t). Approximately, the planar film

moves with the same speed U as the substrate. Substituting Eq. (11) into Eq. (4) and performing an

integration, we have

v(x, t) =
h

f

(t)

h(x, t)
U +

1

h(x, t)

Z
x1(t)

x

dy

✓
1

2
y

2 � x1(t)y

◆
̇(t)� (t)yẋ1(t)

�
. (12)

The e↵ects of viscous forces on the interface profile can be described by the lubrication equations. There-

fore, the dissipation function � can be expressed as a quadratic function of ̇, ẋ1 and U ,

� =

Z
x1

0

3⌘

2h
(v � U)2dx (13)

= ⇣



̇

2 + ⇣

x1x1 ẋ
2
1 + ⇣

UU

U

2 + ⇣

U

̇U + ⇣

x1U ẋ1U + ⇣

x1 ̇ẋ1, (14)

where the coe�cients ⇣
??

can be obtained by the Eq. (12) explicitly. The free energy of the thin film can

be calculated by

A =
�

2

Z
x1

0
(
@h

@x

)2dx+ �Ut+ �h

f

� P

in

Z
x1

0
h(x)dx. (15)
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In this simple model, the film profile is fully characterized by two slow variables: (t) and x1(t). We

then apply the Onsager principle (2),

@(�+ Ȧ)

@̇

= 0 and
@(�+ Ȧ)

@ẋ1
= 0. (16)

The resulting time evolution follows ordinary di↵erential equations (ODE) for (t) and x1(t), which can

be evaluated numerically.

In the steady state, ̇ = 0 and ẋ1 = 0 and the ODE system is simplified as

3Ca


�
Z

x1

0

y

5

6h3
dy +

Z
x1

0

y

3

2h3
x

2
1dy

�
+

2

3

✓
+

P

in

�

◆
x

3
1 � x

2
1 = 0, (17)

3Ca


�
Z

x1

0



2
y

4

2h3
dy +

Z
x1

0



2
y

3

2h3
x1dy

�
+ 

2
x

2
1 + 2

�
x

2
1 � h0

�
P

in

�

� 2x1 = 0. (18)

Considering h

f

/h0 ⌧ 1, the leading order term of the equation (17) shows that,

2

3

✓
+

P

in

�

◆
x

3
1 = 0, ) h0 =

�P

in

h0

�

:= P. (19)

Substitute it into (18), make (18)� (17)⇥ /x1, and ignore the higher order term of h
f

, we have

3Ca


�
Z

x1

0



2
y

4

2h3
dy

�
+ 2h

f

= 0, (20)

where the integral can be approximated by

Z
x1

0



2
y

4

2h3
dy ⇡

3 arctan
q

h0�hf

hf

2
p
2h

f

⇡ 3⇡

4
p
2h

f

, (21)

which indicates that

h

f

⇡
✓

3⇡

8
p
2
3Ca

◆2/3

⇡ 0.885 (3Ca)2/3 . (22)

The thickness h
f

/h0 can be estimated by

h

f

h0
⇡ 1.842

P (Ca)2/3 . (23)

We compare the the numerical results of the ODE system derived from (16) to the numerical results of

the PDE (10) and the prediction analysis (23) in Fig. 4.
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Fig. 4. (color online) Film thickness hf/h0 as a function of P with the same capillary number Ca = 1 ⇥ 10�3

for the numerical simulation of the ODE system (16), the numerical simulation of the PDE system (10) and the

prediction analysis (23).

4. Conclusion

In this paper we investigated the dynamics of the thin film deposited on a moving substrate through a

fixed slot gap. We employed Onsager principle to derive an evolution equation (10) for the film thickness

h(x, t). We also derived an ODE system for the asymptotic value of the film thickness h

f

(t) using the

approximate formulation (11). Both equations give similar prediction on how the steady film thickness

h

f

depends on the substrate velocity U and the reservoir pressure P

in

. Also both equations indicate

that the celebrated scaling law h

f

/ (Ca)2/3 holds for very small capillary number Ca, but significant

deviation is seen for practical capillary numbers.

The approximate formulation based on the Onsager principle gives reasonably good results, but the

result obtained by the approximate formulation is about 20% less than the exact result obtained by the

PDE. The error may be reduced by introducing more parameters to approximate h(x, t) or by considering

more suitable form for h(x, t), but this will be a future work.
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