
Theory on Capillary Filling of Polymer Melts in Nanopores

Yang Yao,1 Hans-Jürgen Butt,1 George

Floudas,1, 2 Jiajia Zhou,3, 4, ∗ and Masao Doi4

1Max Planck Institute for Polymer Research, D55128 Mainz, Germany

2Department of Physics, University of Ioannina,

P.O. Box 1186, 451 10 Ioannina, Greece

3Key Laboratory of Bio-Inspired Smart Interfacial

Science and Technology of Ministry of Education,

School of Chemistry, Beihang University, Beijing 100191, China

4Center of Soft Matter Physics and Its Applications,

Beihang University, Beijing 100191, China

(Dated: January 30, 2018)

Abstract

We present a unified theory for the imbibition dynamics of entangled polymer melts

into nanopores. Experiments [J. Chem. Phys. 146, 203320 (2017)] demonstrated the va-

lidity of t1/2 dependence but contradicted the predictions of the classical Lucas-Washburn

equation because of the prefactor. A reversal in dynamics of capillary filling has been re-

ported with increasing polymer molecular weight. Polymer imbibition under nanometer

confinement can be discussed by two mechanisms: One is the standard hydrodynamic

flow, resulting in a parabolic flow profile. When the inner wall has a strong attraction

to the polymer, a layer of immobile chains is created, resulting in an increase of the ef-

fective viscosity and to slower imbibition. The other is the reptation model proposed by

Johner et al. [Europhys. Lett. 91, 38002 (2010)], leading to a plug flow profile and to

the reduction in the effective viscosity (faster imbibition). The reversal in dynamics of

polymer imbibition can be explained by the competition between these two mechanisms.
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1. INTRODUCTION

Understanding fluid dynamics in a confined geometry is important in many dif-

ferent fields such as engineering, physics, chemistry, biotechnology, and nanotech-

nology. Successful applications include the development of inkjet printheads for

commercial xerography, synthesis and production of various nanoparticles and poly-

meric materials on a lab-on-a-chip device, separation and manipulation of DNA or

other biomacromolecules, and on-the-spot medical diagnosis in clinical pathology.

Under spatial confinement, the volume of the fluid reduces, and the surface-to-

volume ratio increases. This leads to the fact that the interaction between the fluid

and the surface, i.e., the capillary effect, becomes the dominant factor among many

other interactions. A canonical example is the fluid imbibition into a pore with

hydrophilic inner surfaces. For Newtonian fluid, the standard model to describe

the imbibition dynamics is the celebrated Lucas-Washburn equation (LWE) [1, 2]

h(t) = A t1/2, A =

√

Rγ cos θE
2η0

(1)

Here h(t) is the imbibition length of the fluid inside the pore, R is the pore radius, γ

is the surface tension of the fluid, θE is the equilibrium contact angle, and η0 is the

fluid viscosity in the bulk. The dynamical scaling of t1/2 has been found in many

phenomena involving capillarity and wetting [3]. Extensive studies by experiments

[4–7], theory [8, 9], and simulations [10–12] have advanced our understanding on

the capillary filling, but there are still new avenues to be explored [13, 14].

An implicit assumption in the derivation of Lucas-Washburn equation is that

the size of fluid particles should be an order of magnitude smaller than the pore

radius. This is valid for simple fluids, for example, when water ( 10−10 m) fills

a µm-size glass pore. Experimentalists nowadays can probe the range where the

two length scales are comparable: for example, when a polymer (radius of gyration

Rg ∼ 10− 100 nm) penetrate into self-ordered nanoporous aluminum oxide (AAO)

(also R ∼ 10 − 100 nm) [13, 14]. Surprisingly, the dynamical scaling of t1/2 is

consistently observed in experiments and remains valid in the nanometer ranges.

However, the prefactor A exhibits interesting behaviors even for simple liquids [5].
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From the experimentally measured A value, one can deduce an effective viscosity

ηeff =
Rγ cos θE

2A2
. (2)

The value of ηeff is in general different than the bulk value η0.

Recent experiments have shown a complex behavior of the effective viscosity for

capillary imbibition of polymer melts into nanoscale pores [14]. Capillary penetra-

tion of a series of entangled poly(ethylene oxide) (PEO) melts within nanopores of

self-ordered alumina followed h ∼ t1/2 behavior according to the LWE. However, a

reversal in dynamics of capillary filling has been observed with increasing polymer

molecular weight. Polymer chains with 50 entanglements or less showed a slower

capillary filling than theoretically predicted, indicating a higher effective viscosity.

For longer chains with more entanglements, the capillary filling was faster than the

theory and the effective viscosity was reduced as compared to bulk. In this paper,

we present a possible explanation for this unusual observation.

2. THEORETICAL CONSIDERATIONS

We first present a brief derivation of the Lucas-Washburn equation. Let us

consider a cylindrical pore of radius R (schematically shown in Fig. 1). One end

of the pore is in contact with a Newtonian fluid bath, and the fluid is drawn into

the pore under capillarity. The dynamics of the filling can be described by h(t),

the length of the fluid inside the pore.

FIG. 1. A sketch of fluid imbibition into a cylindrical pore.

There are two opposite forces acting on the fluid.

(i) Capillary force

Fc = 2πR(γSV − γSL) = 2πRγ cos θE, (3)
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where γSV, γSL and γ are the interfacial tension between solid/vapor, solid/fluid,

and fluid/vapor, respectively. These three interfacial tensions are related by

the Young’s relation, γSV − γSL = γ cos θE, where θE is the equilibrium con-

tract angle. Here we only consider a hydrophilic surface, i.e., θE < 90◦. The

capillary force drives the imbibition.

(ii) Viscous force

Fv = 8πη0hv, (4)

where η0 is the fluid’s viscosity and v = dh/ dt is the filling speed. The

prefactor depends on the pore geometry, and for circular pore it equals to 8π.

The viscous force provides the friction against the imbibition.

The balance between the capillary and viscous forces results in the evolution

equation

2πRγ cos θE = 8πη0hv (5)

⇒ v =
Rγ cos θE

4η0h
. (6)

The solution to the above equation is

h2 =
Rγ cos θE

2η0
t. (7)

This is the classical Lucas-Washburn equation (1) with h ∼ t1/2 scaling.

We would like to point out some general requirements for systems to have the

t1/2 scaling. The left-hand side of the force balance equation (5) is a thermodynamic

force, which can be derived from conserved potential energy. This term must not

depend on h. A counterexample is the capillary rising when gravity is important.

In this case, the gravitational force is proportional to the mass of the fluid, and h(t)

eventually approaches an asymptotic Jurin’s height at long time. The right-hand

side of the force balance equation (5) is related to the energy dissipation. In the

simplest form of Eq. (4), the force is due to the viscous dissipation resulting from

the parabolic flow profile. This term must be proportional to h. A counterexample

is the dissipation in the meniscus at the fluid front. In this case, a friction force

related to the meniscus has no h-dependency, and the resulting evolution of h(t)

would not be of the Lucas-Washburn type (t1/2).
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In the following, we will consider the imbibition of polymeric fluids into nanopores.

We focus on the situation where the Lucas-Washburn scaling t1/2 is valid, and con-

sider various effects that may lead to different prefactors in a modified LWE.

2.1. Confinement effect

When the pore diameter is of the same order as the molecule size, as in our case

of polymeric fluids, the conformation of the polymer chain is perturbed. In general,

polymer chains have higher free energy in the pores than in the bulk. This reduces

the driving force for the filling, and may be described by an effective surface tension

γeff = γ cos θE −∆f
R

2
(8)

where ∆f is the change in the free energy density of a polymer melt under confine-

ment in comparison to the bulk.

We can evaluate ∆f using the blob model [15]. The polymer chains are under

biaxial confinement and can be viewed as a sequence of compression blobs of the

pore diameter 2R. For ideal chains, the number of monomer g in each compression

blob is given by g = (2R/b)2, where b is the statistical length of the monomer (Kuhn

length). The number of blobs per chain is given by N/g, where N is the number

of monomers per chain. The free energy penalty due to confinement is of the order

of kBT per compression blob, i.e., ∆F = kBTN/g = kBT Nb2/(4R2). To obtain

the free energy density, we use the number density of the polymer chain 1/(v0N),

where v0 is the monomer volume. The difference in the free energy density ∆f is

then given by

∆f =
1

v0N
× kBT

Nb2

4R2
= kBT

b2

4v0R2
. (9)

We estimate the effect of confinement by comparing the two terms in Eq. (8).

The ratio between these two terms is

kBT

γ cos θE

b2

8v0R
. (10)

Using the experiments of PEO in AAO pores as an example [14]: v0 = 6.04×10−29

m3, T = 358 K, kBT = 4.94 × 10−21 J, γ cos θE = 0.02 J/m2, b = 0.68 nm, and

2R = 35 nm, this results a ratio of 0.014. This is too small an effect to account for

the increase in the effective viscosity.

5



2.2. Dead zone effect

For simple fluids, the flow profile inside the pore has a parabolic profile, a result

of the Stokes equation and no-slip boundary condition on the wall. For polymeric

fluids, the polymer chains near the inner wall can be strongly adsorbed. There

exists experimental evidences for that from dielectric spectroscopy measurements

for polymers confined to nanoporous alumina [16]. These immobile chains create

a “dead zone” of thickness ∆R. We define an effective radius of the pore by

Reff = R −∆R, and consider the effect of dead zone on the imbibition speed.

Outside the dead zone, the polymer melts exhibit a macroscopic flow with the

usual parabolic profile. We rewrite Eq. (6) in term of a pressure

v =
R2

8η0h
∆P, ∆P =

2γ cos θE
R

, (11)

where ∆P is the Laplace pressure that drives the imbibition. This term remains

unchanged when the dead zone is considered, but we have to replace R2 in the

numerator by R2
eff . Since only R2

eff/R
2 portion of the polymer contributes to the

flow, the fluid front advances at the rate

ḣ = v
R2

eff

R2
=

R4
eff

8η0hR2
∆P =

R4
eff

8η0hR2

2γ cos θE
R

. (12)

Comparing the above equation to Eq. (6) with η0 replaced by an effective vis-

cosity ηeff , defined by ḣ = γ cos θER/(4ηeffh), we obtain the following expression for

ηeff
ηeff
η0

=

(

R

Reff

)4

. (13)

Since Reff < R, we have ηeff > η0. Also because of the fourth power, the effect of

dead zone is quite substantial even for a small change in Reff . This is the origin of

the slow-down in the imbibition dynamics for shorter chains.

2.3. Reptation under imbibition

As the pore radius is reduced and becomes comparable to the thickness of the

dead zone, the macroscopic flow is nearly stopped. The material transport under

very strong confinement is achieved mainly by the reptation of free polymer chains
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in a network driven by the pressure gradient. Johner et al. has developed a theoretic

framework for this scenario [8]. Here we present their results for completeness, while

also include the pore-size dependence of the pressure gradient.

FIG. 2. Schematics of reptation motion of a polymer chain under a pressure gradient.

Figure 2 shows one single free chain under a pressure gradient. A polymer chain

is constrained by other chains due to entanglements, and as such it can only move

along the “reptation tube”. Each free polymer chain experiences a driving force due

to the pressure difference along the chain [−p(x+Rx) + p(x)] ℓ2 = −ℓ2Rx ∂p/∂x,

where ℓ2 is the cross section and Rx is the x-component of the end-to-end vector.

The friction to the free chain is given by Nζvc, where N is number of segments, ζ

is the friction constant for one Kuhn segment, and vc is the chain’s velocity along

the reptation tube. The balance between the pressure gradient and the frictional

force gives

vc = −
ℓ2

ζN
Rx

∂p

∂x
. (14)

The averaged velocity for the center of mass of the polymer is

⟨vg⟩ =
〈

Rx

L
vc

〉

= −
ℓ2

ζNL
⟨R2

x⟩
∂p

∂x
= −

ℓ2at
3ζN

∂p

∂x
, (15)

where L is the contour length of the tube, given by L = (N/Ne)at. Ne is the

entanglement length and at =
√
Neb is the tube diameter. The average of R2

x is

assumed to be ideal ⟨R2
x⟩ = (1/3)Nb2.
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If the fraction of polymer chains participating the reptation is ϕ, the filling speed

is then given by

ḣ = ϕ⟨vg⟩ = ϕ
ℓ2at
3ζN

2γ cos θE
hR

, (16)

where we averaged the pressure gradient along the whole fluid, −∂p/∂x = ∆P/h =

2γ cos θE.

Complication arises when one needs to specify the cross-section ℓ2. One natural

choice is the cross-section of the reptation tube,

ℓ2 = a2t ⇒ ḣ = ϕ
N3/2

e b3

3ζN

2γ cos θE
hR

. (17)

In Ref. [8], Johner et al. used

ℓ2 =
Neb3√
Neb

= N1/2
e b2 ⇒ ḣ = ϕ

Neb3

3ζN

2γ cos θE
hR

. (18)

The only difference is in the scaling with respect to Ne. Here we shall assume a

general form of

ḣ = ϕ
Nα

e b
3

3ζN

2γ cos θE
hR

, (19)

where α is the exponent.

2.4. Summary on effective viscosity

In the case of Rg ≪ R, the dead-zone effect is dominant and the filling dynamics

is given by Eq. (12). In the other limit, Rg ≫ R, the reptation mode is important

and the filling dynamics is governed by Eq. (19). A simple formula to interpolate

these two limits is

ḣ =

[

R4
eff

8η0R2
+ ϕ

Nα
e b

3

3ζN

]

2γ cos θE
hR

(20)

We again define an effective viscosity by

ḣ =
γ cos θER

4ηeffh
=

R2

8ηeff

2γ cos θE
hR

. (21)

Comparing the above two equations, we obtain

ηeff
η0

=

[

(

Reff

R

)4

+ ϕ
8Nα

e b
3η0

3ζNR2

]

−1

. (22)
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In the limit of small pore, the first term in the square bracket vanishes because

Reff → 0. The effective viscosity is then dominant by the second term

ηeff ∼ η0
(η0
N

)

−1

∼ N1. (23)

This is quite different than the bulk scaling η0 ∼ N3. Thus confined polymers show

an enhanced mobility, consistent with the experiment findings in Refs. [13] and [14]

that have shown exponents of ∼ 1.4 and ∼ 0.9, respectively.

3. COMPARISON TO THE EXPERIMENT AND DISCUSSION

We compare our theoretical model with the capillary filling experiments in

Ref. [14]. The bulk properties of PEO melts of different molecular weights are

shown in Tab. I. A fit to the viscosity gives η0 ∼ N2.91, which indicates that we

may use the standard formulation of Doi-Edwards model [17]

η0 ≃
ζb2

v0

N3

N2
e

. (24)

Sample γ (−3 N/m) θe (deg) η0 (Pa·s)

PEO 50k 29.1 44.0 4.3 × 102

PEO 100k 27.8 44.5 3.9 × 103

PEO 280k 28.0 44.0 1.5 × 105

PEO 500k 28.1 40.7 4.6 × 105

PEO 1M 28.0 47.7 2.7 × 106

TABLE I. PEO melt properties.

The effective viscosity (22) can be rewritten as

ηeff
η0

= [f(∆R,R) + g(φ, N,R)]−1 . (25)

The first function f is related to the dead-zone

f(∆R,R) =

⎧

⎨

⎩

(1− ∆R
R )4 if R > ∆R

0 if R < ∆R
(26)
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The second function g is from the reptation model,

g(φ, N,R) = ϕ
8Nα

e b
3

3ζ

η0
NR2

= ϕ
8Nα−2

e b5

3v0

N2

R2
= φ

N2

R2
, (27)

where we have used Eq. (24) and grouped parameters into one single factor φ. In the

end, we have two free parameters: ∆R and φ. In principle, these two parameters

may vary for different pore radii and molecular weights. As a first attempt, we

neglect those dependence and assume ∆R and φ are constants.

 0.01
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 100

 0.01  0.02  0.03  0.04  0.05

η e
ff/
η 0
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50k
100k
280k
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FIG. 3. Comparison between the experiment and theory. The symbols are shown for

the experimental data taken from Ref. [14]. The lines are from theoretical prediction of

Eq. (25).

Figure 3 shows the comparison between the experiment and theory. We plot

the ratio of the effective viscosity to the bulk viscosity as a function of 1/R, the

inverse of the pore radius, for a polymer with various molecular weights. The fitting
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parameters are obtained by global fitting resulting to:

∆R = 34.3nm, φ = 3.21× 10−5 [nm2]. (28)

The theoretic prediction is in qualitative agreement with the experimental data.

Most importantly, the theory has captured the non-monotonic variation in the ef-

fective viscosity. The main reason for the non-monotonic behavior is that functions

f and g vary differently with respect to 1/R. In the large pore limit, these two

functions f → 1 while g → 0, and the effective viscosity approaches the bulk value,

ηeff → η0. As the pore radius decreases (1/R increases), the effect of the dead zone

becomes important and eventually stops the macroscopic flow. Accordingly, the

function f decreases. On the other hand, for small pores the reptation motion of

the entangled polymer becomes effective and function g increases. It is the oppo-

site trends in the functions f and g that lead to the non-monotonic variation of the

effective viscosity as observed experimentally.

The inversion point, i.e., the value of 1/R when the effective viscosity has its

maximum, is a function of the molecular weight. For polymers of low molecular

weight, the inversion point corresponds to a pore radius that is comparable with

the thickness of the dead-zone, ∆R. Alternatively, for longer chains, the maximum

shifts towards the 1/R → 0, i.e., to the very weak confinement limit.

4. SUMMARY

We present a theoretical model for the imbibition dynamics of entangled polymer

melts into nanopores. Experiments have demonstrated the validity of the t1/2 scal-

ing, however the Lucas-Washburn equation breaks down because of the prefactor.

We have considered various effects that can affect the imbibition dynamics while

preserving the t1/2 scaling: (i) The effect of confinement. Biaxial confinement of

polymer chains induces a penalty in the free energy, but the effect is too small to ex-

plain the slow-down in dynamics. (ii) The effect of adsorption. Strongly-adsorbed

chains create a dead zone, reducing the pore radius, and leading to an increase in

the effective viscosity. (iii) The effect of reptation under a pressure gradient: The

reptation of polymer chains under strong confinement [8] enhances the mobility
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of confined chains, leading to faster imbibition. The overall imbibition dynamics

can be discussed by the competition of the latter two mechanisms. The theoreti-

cal predictions captures the main features of the experiment being in a qualitative

agreement with the experiments.
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