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ABSTRACT: Imidazole-based materials have attracted considerable
attention due to their promising potential for facilitating anhydrous
proton transport at high temperatures. Herein, a machine learning-
based deep potential (DP) model for bulk imidazole with first-
principles accuracy is developed. The trained model exhibits
remarkable accuracy in predicting energies and forces, with minor
errors of 4.71 × 10−4 eV/atom and 3.23 × 10−2 eV/Å, respectively.
Utilizing DP molecular dynamics simulations, we have systematically
investigated the temperature-dependent formation and dynamics of
imidazole supramolecular chains through the partial radial distribu-
tion function, quantification of hydrogen bond numbers, incoherent
intermediate scattering function, and diffusion coefficient. The
findings reveal the influence of temperature on the proton transport
path following either the “Grotthuss” and “vehicle” mechanism.

1. INTRODUCTION
Proton transport is essential for regulating enzymatic catalysis
and bioenergetics in biological systems,1,2 as well as for driving
advancements in energy conversion and storage technologies
like proton exchange membrane fuel cells.3,4 The leading
proton exchange membranes in use, Nafion membranes, rely
heavily on the maintenance of embedded water channels for
stable performance, necessitating high humidity and moderate
temperatures (<80 °C).5 However, a growing number of
applications desire outstanding proton conductivity at higher
temperatures (up to 200 °C), where retaining water molecules
proves challenging.6 For this purpose, imidazole and its
derivatives have garnered significant interest for their non-
volatile nature, high boiling points, and the capability to exist
in two tautomeric forms that support a proton-transport
pathway between the nitrogen atoms.7−10 Proton transport in
proton-conducting materials based on imidazole can occur via
either the “vehicle” or “Grotthuss” mechanism.11,12 The
“vehicle” mechanism is contingent upon the diffusion of
imidazole, and the “Grotthuss” mechanism relies on the
reorientation of imidazole dipoles within the supramolecular
chain linked by hydrogen bonds (HBs).13 Previous studies
have proved that confining imidazole within one-dimensional
nanochannels significantly improves anhydrous proton con-
ductivity, with the predominance of the “Grotthuss”
mechanism.13−15 Therefore, understanding the formation and

dynamics of the imidazole supramolecular chain and its
temperature dependence is crucial for the design of proton
exchange membranes with enhanced anhydrous proton
conductivity.
As a powerful tool to investigate the dynamic properties in

microscopic studies, atomistic simulations offer valuable
information and insights that enhance and clarify the
experimental findings. However, the high computational
costs limit the application of ab initio molecular dynamics
(AIMD) simulations to systems with a large number of atoms
over extended time scales, thus posing a challenge when
studying supramolecular systems. Though classical MD
(CMD) simulation overcomes the scale problem, its accuracy
is seriously affected by the empirical potential. Recently, novel
machine learning potential models have emerged to confront
the persistent challenge to combine both high accuracy and
efficiency, including the Behler−Parrinello neural network,16
the deep tensor neural network,17 the bonds-in-molecules
neural network,18 the Gaussian approximation potentials,19 the
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gradient domain machine learning,20 and the deep potential
(DP).21,22 For a diverse range of systems, MD simulations
based on DP have exhibited efficiency competitive with CMD
while achieving accuracy levels comparable to AIMD based on
density functional theory (DFT).23−27 In particular, DP has
also been successfully applied to study systems with HB,28,29

indicating its potential in investigating the dynamics of
imidazole supramolecule systems.
In this work, we develop a DP for imidazole trained on DFT

calculations and employ DPMD on a bulk system containing
large quantities of imidazole at different temperatures. The
DPMD results quantitatively demonstrate the temperature
dependence of the formation and dynamics of imidazole
supramolecular chains, which reflects the variation of the
proton conduction path in the “Grotthuss” mechanism. The
diffusion of imidazole has also been studied to reflect the
proton transport in the “vehicle” mechanism. These findings
are valuable in guiding the design of novel anhydrous proton-
conducting materials that are effective across a wide range of
temperatures.

2. METHODS
2.1. Data Generation and DP Training. In order to extensively

generate training datasets for the DP model, we adopt the DP
generator (DP-GEN) workflow.30,31 The DP-GEN process involves
three key steps in each iteration: training, exploration, and labeling.
Through the implementation of a streamlined and efficient sampling
technique, the requirement for extensive training data is reduced. This
ensures the precision and dependability of the resulting surface
potential energy surface model.
2.1.1. Initialization. AIMD simulations of bulk imidazole (16

imidazole molecules) at different temperatures (T = 313.15, 353.15,
393.15, 433.15, and 473.15 K) were performed by using the Vienna
Ab initio Simulation Package (VASP) to initialize the DP-GEN
workflow.32,33 All of the first-principles calculations were performed
based on DFT with all-electron projected augmented wave method.34

Generalized gradient approximation with the Perdew−Burke−
Ernzerhof (PBE) exchange correlation functional was employed.35,36

The valence wave functions were expanded in a plane-wave basis with
a cutoff energy of 500 eV. We used the Methfessel−Paxton method to
determine partial occupancies with a smearing width of 0.05 eV. The
k-point mesh and time step were set to 1 × 1 × 1 and 1 fs for all
calculations. The convergence criterion for an electronic self-
consistent loop was set to 1.0 × 10−6 eV. Previous studies37 have
shown that dispersion-corrected DFT contributes significantly to
computational accuracy, particularly in systems like water, which
contains a high number of HB. Thus, the PBE functional with a D3
dispersion correction38 was used. The simulation cell is initially
equilibrated at the target temperature for 12 ps with the NPT
ensemble to obtain the density for each system. Then, 6 ps NVT runs
were performed at given temperatures, and configurations in the last 3

ps runs of each system (15,000 configurations in total) were extracted
as the initial dataset for DP training. In addition, 1000 configurations
of each system (5000 configurations in total) from another 6 ps NVT
runs were extracted as the validation dataset to test the final DP
model.

2.1.2. Training. Four distinct DP potential models were developed
during the training step using the initial dataset. These models shared
consistent fitted parameters, differing only in the random seed
variations. Each model underwent 800,000 gradient descent steps
using the Adam stochastic gradient descent method within the
DeePMD-kit39 package. The se_e2_a descriptor was utilized with a
cutoff radius of 6 Å and a smoothing cutoff of 0.5 Å. The embedding
and fitting nets consisted of three layers with nodes [50, 100, and
200] and [320, 320, and 320], respectively. The initial values for
tunable prefactors in the loss function were set to pestart = 2, pelimit = 10
for energy error and pfstart = 1000, pflimit = 1 for force error, respectively.
No virial data is available in the dataset, so the virial prefactors are set
to pvstart = pvlimit = 0.

2.1.3. Exploration. During the exploration stage, the DP-GEN
employs the large-scale atomic/molecular massively parallel simulator
(LAMMPS)40 for DPMD simulation. This enables the exploration of
the configuration space across different thermodynamic conditions.
The exploration conditions set for each iteration in this work are listed
in Table S1. In order to sample reasonable configures from DPMD
trajectories, the model deviation σ was introduced, representing the
maximum standard deviation of the predictions for the atomic forces

= F Fmax
i

i i
2

(1)

where Fi describes the force acting on atom i predicted by the DP
model and ⟨Fi⟩ denotes the average of four different DP models. The
lower and upper trust levels for force errors σlo = 0.07 eV and σhi =
0.25 eV were used, based on the accuracy attainable with the trained
DP model. Configurations exhibiting small deviations, σ < σlo, indicate
that the current model can accurately describe them. Conversely,
excessive force deviation, σ > σhi, signals that the trajectories may be
nonphysical, which were consequently not collected. Only those
configurations falling within the range σlo < σ < σhi will be considered
for DFT calculations in the labeling stage.

2.1.4. Labeling. During the labeling stage, candidate configurations
from the exploration stage underwent single point energy calculations
using DFT theory to gather the energy and force data. These labeled
configurations were then incorporated into the training dataset for the
subsequent training process. The exploration process was deemed
converged when the percentage of the remaining candidate
configurations reached exceedingly low levels.
Finally, the DP-GEN process completed 10 iterations and

introduced 13,599 new configurations to the training dataset, bringing
the total to 28,599 configurations. The accuracy improvement of the
model in each iteration of the DP-GEN process is shown in Figure S1.
The hyperparameters used in the final DP model are identical to those
used during the training step in dataset generation, with the exception
of the gradient descent training steps. A total of 1,200,000 steps were

Figure 1. Comparison results between DFT calculation and DP prediction of (a) energy and (b) force for bulk imidazole at all temperatures.
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carried out to improve training accuracy and produce a high-fidelity
DP model.
2.2. DPMD Simulations. DPMD simulations were performed

based on the trained DP models using LAMMPS. In this stage, the
number of imidazole molecules in the cell was increased to 1024, and
the trajectories for analyzing the formation and dynamics of the
imidazole supramolecular chain were generated. First, DPMD
simulations were conducted in the NPT ensemble for 500 ps to
determine the density. The result is well consistent with that of
AIMD, as shown in Figure S2, which illustrates the trained DP model
demonstrates comparable accuracy to AIMD. However, the densities
obtained from both DPMD and AIMD simulations are lower than
those from CMD simulations using the AMBER 94 force field.41 This
discrepancy can largely be attributed to the differences in accuracy
between DFT calculations and CMD performed with a classical force
field. Subsequently, simulations were run in the NVT ensemble for
1000 ps, and these trajectories were extracted for further analysis.

3. RESULTS AND DISCUSSION
3.1. Validation of DP Model. The validation of the DP

model used in DPMD simulations was conducted by assessing
the predicted atomic forces and total energy of bulk imidazole
for the unseen configurations. The comparison results between
the DFT calculation and the DP model predictions for all
systems in energy and force (in the three spatial directions x, y,
and z) are presented in Figure 1. Excellent diagonal
distribution of both energy and force illustrates that the final
DP model has a high precision to accurately reproduce the
DFT results. The average root-mean-square errors (RMSE) of
all systems equals to 4.71 × 10−4 eV/atom for energy
prediction and 3.23 × 10−2 eV/Å for force prediction,
respectively, which are sufficiently small.

For further validation of the final DP model, additional 6 ps
AIMD simulations were conducted with the same density as
that in DPMD simulations. The partial radial distribution
function (RDF) of each system in both DPMD simulations
and AIMD simulations was calculated by

=g r
r

N r
( )

1
4

d ( )

dr2
(2)

where ρβ denotes the number density of the β atom and Nαβ(r)
represents the average number of β atoms that lie in a sphere
of radius r centered on an α atom. The RDF of nitrogen atoms
at all temperatures in DPMD simulations is in good agreement
with the AIMD results, as shown in Figure S3. The results
suggest that the developed DP model is robust and capable of
reproducing the first-principles calculation results.
3.2. Properties of Bulk Imidazole. In order to investigate

the temperature effect on the formation of imidazole
supramolecular chains, we mark the nitrogen atom with
hydrogen within an imidazole molecule as a N1 atom, and
another as a N2 atom. In addition, N12 atoms refer to when
both N1 and N2 atoms are considered. The RDF between
different types of nitrogen atoms for each system is depicted in
Figure 2. The RDF between N12−N12 atoms exhibits three
prominent peaks located at approximately 2.25, 2.85, and 4.95
Å, as shown in Figure 2a. According to the structure of
imidazole, the first peak predominantly arises from another
nitrogen atom within the same imidazole molecule. The
second peak is entirely attributed to the N1 or N2 atom of a
different imidazole molecules involved in hydrogen bonding,
since this peak is explicitly observed in the RDF between N2−
N1 atoms and is completely absent at the same position in the

Figure 2. RDF g(r) between (a) N12 and N12 atoms, (b) N2 and N1 atoms, and (c) N1 and N1 atoms.

Figure 3. Temperature dependence of imidazole supramolecular chains formation, for (a) the efficiency of hydrogen bond formation ηHB, (b) the
maximum degree of polymerization Nmax of the chains, and (c) the probability distribution P(N) of an imidazole supramolecular chain with a
degree of polymerization N.
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RDF between N1−N1 atoms, as illustrated in Figure 2b,c. The
third peak is mainly contributed by a nitrogen atom of the
same type within the paired imidazole molecule, as shown in
Figure 2c. With the rise in temperature, the density of the
system decreases, leading to the higher first peak. By contrast,
the height of the second peak decreases with the increasing
temperature. This phenomenon signifies the broken of HB due
to the elevated energy. Moreover, the higher the temperature,
fewer the retained HB. The result illustrates that increasing
temperature hinders the establishment of proton transport
paths based on the “Grotthuss” mechanism.
Quantitative calculations were employed to investigate the

temperature dependence of imidazole supramolecular chain
formations. The number of HB in each system was determined
based on the criterion that the N1−N2 atom distance is less
than 3.5 Å and the N1−H−N2 angle is greater than 135°. The
efficiency of HB formation ηHB, which also reflects the
efficiency of constructing the proton transport path, is defined
as the ratio of the number of formed HB and the maximum
number of HB of the system. Since each HB involves two
imidazole molecules, the maximum number of HB molecules
should be equal to the total number of imidazole molecules.
Therefore, the efficiency of HB formation can be expressed as

= ×n
n

100%HB
HB

imi (3)

where nHB represents the average number of HB at certain
temperature and nimi denotes the total number of imidazole
molecules. The data of nHB were collected from the last 400 ps
of DPMD simulations, as depicted in Figure S4a, and the data
of ηHB are shown in Figure 3a. Within the temperature range
from 313.15 to 473.15 K, ηHB has a good linear relation with
temperature T, given by ηHB (%) ≈ −0.1182 × T (K) + 136.4.
The result shows higher efficiency of HB formation in bulk

imidazole compared with previous study by CMD simulations
using the AMBER 94 force field, as shown in Figure S5.41 We
deem it can be attributed to classical force fields having a
relatively simple form, which struggles with accurately
describing the HB. This result also demonstrates that DPMD
is a promising method for a complex system. In addition, the
observation in this work indicates that hydrogen atoms in all
imidazole molecules will engage in HB formation at temper-
atures below approximately 308 K. Furthermore, we collected
the degree of polymerization N for each imidazole supra-
molecular chain to demonstrate the length of the proton
transport paths. The method for calculating the degree of
polymerization N of the supramolecular chain involves using
an imidazole molecule that forms only one HB as the chain

end unit. Imidazole molecules connected by HB are
sequentially counted until another imidazole molecule, also
forming a single HB, is encountered at the opposite chain end.
The variation of the maximum degree of polymerization Nmax
of the chains with temperature was determined based on the
data provided in Figure S4b, as shown in Figure 3b. The
average value of Nmax of the chains at 313.15 K can reach
around 122, indicating a high level akin to that seen in
conventional polymer systems. With the increase in temper-
ature, the supramolecular chains gradually disassemble, and
Nmax decreases to around 25 at 473.15 K. To capture the
polydispersity of the chains, the probability distribution P(N)
of an imidazole supramolecular chain with a degree of
polymerization N was calculated at all temperatures by

= × ×P N
n N

n
( ) 100%N

imi (4)

where nN stands for the number of chains with a degree of
polymerization N. As shown in Figure 3c, the distribution peak
is extremely broad at 313.15 K and gradually narrows with
increasing temperature. This trend indicates that while
increasing the temperature leads to a reduction in the length
of the proton transport path, it results in a more uniform
distribution of path lengths. Furthermore, the maximum P(N)
values are observed at approximately N = 28, 15, 9, 6, and 4
when T = 313.15, 353.15, 393.15, 433.15, and 473.15 K,
respectively. Previous studies indicate that the melting
temperature of imidazole is approximately 363 K.42 Therefore,
in our simulation, 313.15 K is below the melting temperature,
353.15 K is near it, while 393.15, 433.15, and 473.15 K are
above the melting temperature. At 353.15 K, the critical state
of the solid−liquid transition, the system still maintains a high
HB formation efficiency of approximately 94.8%. However, the
average polymerization degree of chains falls below 15 and
results in a molecular weight under 1000 g/mol, which shows
the characteristics of oligomers.
For the “Grotthuss” mechanism, the reorientation of

imidazole dipoles is directly related to the segmental α-
relaxation within the supramolecular chain. Therefore, the
incoherent intermediate scattering function (ISF) of the
nitrogen atoms was calculated for each system using the
expression

=
=

·[ ]F q t
N

( , )
1

e
t i

N
q r t r

0
1

i ( ) (0)
t

i i0

(5)

where Nt stands for the total number of the nitrogen atoms,
ri(t) denotes the position of the ith atom at time t, and q0 ≈

Figure 4. (a) Incoherent ISF F(q0, t) of the nitrogen atoms in bulk imidazole at all temperatures. (b) Characteristic segmental α-relaxation time τα
as a function of temperature T.
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1.23 Å−1 corresponds to the position of the first peak in the
static structure factor (SSF), as shown in Figure S6. Since the
temperatures are relatively high, only one mode is observed in
the decay of ISF, as indicated in Figure 4a. Additionally, the
decay of ISF of bulk imidazole becomes significantly faster with
the increase of temperature. The characteristic segmental α-
relaxation time τα at each temperature is obtained according to

the criterion =F q t( , ) e t
0

( / ) , as depicted in Figure 4b. All
relaxation times lie within the picosecond range throughout
the temperature range studied and are well described by the
Vogel−Fulcher−Tammann (VFT) relation43

i
k
jjjjj

y
{
zzzzz=T

BT
T T

( ) exp0
0

0 (6)

where B is a basic parameter describing the strength of the
temperature dependence of relaxation in glass-forming liquids,
and T0 is referred to as the Vogel temperature that can be
considered as the glass-transition temperature (Tg) in ideal
glasses.44 The fitting result shows B ≈ 2.38 and T0 ≈ 150 K,
demonstrating the onset temperature of the “Grotthuss”
mechanism. Furthermore, to establish a correlation with
neutron scattering experiments, we calculated both the SSF
and ISF of hydrogen atoms bonded to nitrogen, as shown in
Figures S7 and S8a. The segmental relaxation dynamics are
also effectively represented by these hydrogen atoms, with
VFT fitting results showing B ≈ 2.26 and T0 ≈ 167 K, as
shown in Figure S8b.
Another important quantity that can reflect the reorientation

of imidazole dipoles is the rotational correlation function
(RCF).45 We calculated the RCF of bulk imidazole molecules
following expression

= + •t t t te eRCF( ) ( ) ( )i i0 0 (7)

where angular brackets denote ensemble averages and ei is a
unit vector rotating with molecule i. Herein, we used the unit
vector of the N1 atom to N2 atom as ei of an imidazole
molecule. The results are plotted in Figure 5a. From the

criterion =tRCF( ) e t( / ) , the characteristic time τ of
rotation of imidazole dipoles was obtained, as shown in Figure
5b. The relation between characteristic time τ and temperature
T is described by the Arrhenius relation

i
k
jjj y

{
zzz=T A

E
( ) exp

RT
a

(8)

where Ea represents the activation energy and A is the constant
prefactor. The fitting result shows that A ≈ 4.67 fs, and the
activation energy for rotation of imidazole dipoles is Ea ≈ 2.65
× 104 J/mol. Note that in this work, we primarily focus on the
formation and dynamics of imidazole supramolecular chains,
without providing excess protons for conduction. The absence
of transient chain breakage during proton conduction results in
greater stability of the imidazole molecules within the
supramolecular chain. Consequently, the rotation of a single
imidazole molecule within the stable supramolecular chain is
challenging. The activation energy obtained in this case may be
higher than that during proton conduction.
To evaluate the proton transport capacity of imidazole

through the “vehicle” mechanism, the mean square displace-
ment (MSD) of imidazole was calculated as a function of time
t for different temperatures by

= [ ] + [ ]

+ [ ]

t x t x y t y

z t z

MSD( ) ( ) (0) ( ) (0)

( ) (0)

i i i i

i i

2 2

2 (9)

where xi, yi, and zi represent the coordinates of the ith nitrogen
atom in bulk imidazole. The linear MSD curves depicted in

Figure 5. (a) Rotational correlation function RCF(t) of bulk imidazole molecules at all temperatures. (b) Characteristic time τ of rotation of
imidazole dipoles as a function of temperature T.

Figure 6. (a) MSD of imidazole as a function of time t at all temperatures. (b) Diffusion coefficient D of imidazole as a function of temperature T.
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Figure 6a indicate that the diffusion mechanism of imidazole
within supramolecular chains is still dominated by Brownian
motion. Subsequently, the diffusion coefficient of imidazole
was obtained according to the MSD using the Einstein
equation

=D
t

lim
MSD( )

2dtt (10)

where d stands for the dimensionality of the system, which is
equal to 3 in this work. As shown in Figure 6b, increasing the
temperature can improve the diffusion coefficient of imidazole
so that it enhances the proton transport over the desired
temperature range; however, the improvement is no more than
an order of magnitude. Moreover, the relation between
diffusion coefficient D and temperature T is well described
by the Arrhenius relation

i
k
jjj y

{
zzz=D T D

E
( ) exp

RT0
a

(11)

where Ea represents the activation energy for diffusion and D0
represents pre-exponential factor, which can be considered as
the diffusion coefficient at extremely high temperatures. The
fitting result shows that D0 ≈ 7.31 × 10−7 m2/s and the
diffusion of imidazole molecules is activated by Ea ≈ 1.95 ×
104 J/mol. Previous study41 demonstrates that the activation
energy obtained from HB lifetimes for the bulk imidazole,
which represents the energy required to break HB, is 8.7 × 103
J/mol, lower than the activation energy for the diffusion of
imidazole molecules. This illustrates that as the temperature
increases the HB within solid imidazole begin to break,
allowing for HB exchange and reorientation of imidazole
dipoles. At this stage, proton conduction primarily relies on the
“Grotthuss” mechanism. With further temperature elevation,
both the efficiency of HB formation and the polymerization
degree of supramolecules decrease, leading to a reduction in
proton conduction pathways based on the “Grotthuss”
mechanism. Simultaneously, imidazole undergoes melting,
enhancing the self-diffusion capability of molecules in the
bulk. The proton conduction gradually balances between the
“Grotthuss” mechanism and the “vehicle” mechanism.

4. CONCLUSIONS
In conclusion, we developed a high-accuracy DP model for
bulk imidazole and systematically investigated the temperature-
dependent formation and dynamics of imidazole supra-
molecular chains by DPMD simulations. The DP model was
established through an iterative training approach involving
compressed and expanded starting structures coupled with
DFT calculations and active learning. The performance of the
DP model was assessed by calculating the RMSE for energy
and force as well as comparing the RDF of bulk imidazole in
both AIMD and DPMD simulations. The maximum RMSE
values obtained were 4.71 × 10−4 eV/atom for energy and 3.23
× 10−2 eV/Å for force, indicating strong predictive capability.
In addition, the RDF of nitrogen atoms in imidazole from
DPMD simulations closely matched the AIMD outcomes
across all temperatures. These results indicate that the well-
trained DP model is capable of accurately describing the
system of bulk imidazole.
Utilizing the DP model, we successfully simulated a large cell

comprising 1024 imidazole molecules with first-principles
accuracy and generated a trajectory length of 1 ns for in-

depth analysis. The DPMD results revealed a decrease in the
number of HB in bulk imidazole with an increase in
temperature, as evidenced by the declining height of the
second peak in the RDF of nitrogen atoms. From 313.15 to
473.15 K, a good linear relation between the efficiency of HB
formation and temperature was obtained as ηHB (%) ≈
−0.1182 × T (K) + 136.4, and Nmax of imidazole supra-
molecular chains decreases intensively from approximately 122
to 25. The distribution of N of the chains is extremely broad at
313.15 K and gradually narrows with increasing temperature.
Furthermore, the maximum probability of N of the formed
supramolecular chains appears at approximately N = 28, 15, 9,
6, and 4 when the temperature is 313.15, 353.15, 393.15,
433.15, and 473.15 K, respectively. Regarding the dynamics of
imidazole supramolecular chains, the characteristic segmental
α-relaxation time τα was observed within the picosecond range
across the temperature range of 313.15 to 473.15 K. The glass-
transition temperature of the supramolecular chain was
identified as 150 K according to the VFT relation. Moreover,
within the temperature range of 313.15 to 473.15 K, the
diffusion coefficient of imidazole is approximately 10−9 m2/s,
showing a variation of not more than 1 order of magnitude.
The activation energy of diffusion was determined as Ea ≈ 1.95
× 104 J/mol. The insights presented in this study may
contribute to a deeper understanding of the effective proton
transport through both the “Grotthuss” and “vehicle”
mechanisms in imidazole-based materials.
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